Draft policy review
A categorisation of invertebrate and pathogen organisms associated with fresh table grape bunches (Vitis spp.) imported from other Australian states and territories

Supporting your success
Contributing authors
Bennington JM Research Officer – Biosecurity and Regulation, Plant Biosecurity
Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity
Hooper RG Research Officer – Biosecurity and Regulation, Plant Biosecurity
Jackson SL Research Officer – Biosecurity and Regulation, Plant Biosecurity
Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity
Tuten SJ Senior Policy Officer – Biosecurity and Regulation, Plant Biosecurity

Department of Agriculture and Food, Western Australia, December 2014

Document citation
DAFWA 2014. A categorisation of invertebrate and pathogen organisms associated with fresh table grape bunches (Vitis spp.) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia. 300 pp., 271 refs.
Copyright © Western Australian Agriculture Authority, 2014

Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever without prior written permission of the Western Australian Agriculture Authority.

For further information or additional copies of this document, please contact:
Marc Poole
Plant Biosecurity
Biosecurity and Regulation
Department of Agriculture and Food
3 Baron-Hay Court, South Perth WA 6151
Telephone: +61 (0)8 9368 3224
Email: plantbiosecuritypolicy@agric.wa.gov.au
Post: Locked Bag 4, Bentley Delivery Centre WA 6983

Important disclaimer
The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.

Accessibility – screen readers
To enhance your experience, we suggest turning off spelling error notification as there are agricultural and departmental terms that may not be found in your local computer’s dictionary.
Contents

Overview .. 1

Table 1 Pest categorisation summary ... 2

Table 2 Quarantine pest invertebrates associated with fresh imported table grapes 4

Table 3 Quarantine pest pathogens associated with fresh imported table grapes 5

Methodology .. 6

Introduction .. 6

Determining an organism's quarantine pest status ... 6

Association with viticulture in Australia ... 6

Association with the table grape bunch pathway ... 7

Potential to establish in Western Australia .. 7

Potential economic importance .. 8

Final determination .. 8

Pest categorisation of invertebrate organisms .. 9

Table 4 Snails and slugs associated with Australian viticulture 9

Table 5 Mites and spiders associated with Australian viticulture 11

Table 6 Insects associated with Australian viticulture ... 27

Table 7 Invertebrates associated with the table grape bunch pathway 111

Table 8 Potential for establishment and economic consequences (invertebrates) 138

Pest categorisation of pathogen organisms .. 147

Table 9 Bacteria and phytoplasma associated with Australian viticulture 147

Table 10 Fungi associated with Australian viticulture ... 153

Table 11 Nematodes associated with Australian viticulture 205

Table 12 Protozoa associated with Australian viticulture 223

Table 13 Virus and viroids associated with Australian viticulture 224

Table 14 Pathogens associated with the table grape bunch pathway 235

Table 15 Potential for establishment and economic consequences (pathogens) 259

References .. 277
Overview

Grape (Vitis spp.) fruit, seed and plant material have been prohibited entry into Western Australia from all sources for many years. The original prohibition was implemented due to concerns regarding phylloxera (Daktulosphaira vitifoli) and downy mildew (Plasmopara viticola). In 2008, Phomopsis viticola and grapevine fanleaf virus were identified as additional pests of concern and an alternative procedure under the Plant Diseases Act 1914 was adopted. This alternative procedure revoked the reference to downy mildew and included Phomopsis viticola and grapevine fanleaf virus as reasons for the restricted entry of grape fruit, seed and plants pending the outcome of a pest risk analysis. A regulation amendment was placed on hold pending the implementation of the Biosecurity and Agriculture Management Act 2007 (BAM Act) and relevant regulations.

Following the implementation of the BAM Act and Biosecurity and Agriculture Management Regulations 2013, downy mildew was declared by the Minister to be a permitted organism. Phylloxera, Phomopsis viticola and grapevine fanleaf virus were declared by the Minister to be prohibited organisms.

A formal pest risk analysis (PRA) for the importation of fresh table grape bunches has now commenced. A PRA is the mechanism by which the Department of Agriculture and Food, Western Australia's (DAFWA) Plant Biosecurity Policy Group considers biosecurity risks associated with the importation of fresh table grape bunches from other Australian states and territories.

The identification of pest invertebrate and pathogen organisms of quarantine concern for Western Australia has been undertaken via a pest categorisation process (this document). The pest categorisation process identifies pest invertebrate and pathogen organisms that are:

- absent from Western Australia
- associated with the table grape bunch pathway
- have potential to establish in Western Australia
- would be of economic concern should they establish in Western Australia.

The pest categorisation process has assessed 622 invertebrate and pathogen organisms associated with viticulture production in Australia.

This review has determined that 14 invertebrate (Table 2) and 13 pathogen organisms (Table 3) not present in Western Australia have the potential to be present on table grape bunches imported into Western Australia from other Australian states and territories. These 27 organisms also have the potential to establish in Western Australia and be of economic importance should they establish.

These 27 organisms satisfy the International Plant Protection Convention (IPPC) (FAO 1997) definition of a quarantine pest being:

‘A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled.’

The quarantine pest invertebrate (Table 2) and pathogen (Table 3) organisms recognised in this pest categorisation require further analysis via the risk assessment component of the PRA. The PRA will evaluate the quarantine pest risk profile and determine the requirement and extent of any phytosanitary measures necessary to provide the appropriate level of protection for Western Australia, without unduly restricting trade of table grape bunches in accordance with the Agreement on Sanitary and Phytosanitary Measures (SPS Agreement).
<table>
<thead>
<tr>
<th>Organism group</th>
<th>Associated with Australian viticulture</th>
<th>Absent from Western Australia or of regional concern</th>
<th>Potential presence on the tablegrape pathway</th>
<th>Potential to establish</th>
<th>Potential for economic consequences</th>
<th>Quarantine pest species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snails</td>
<td>5</td>
<td>0</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>0</td>
</tr>
<tr>
<td>Mites/spiders</td>
<td>56</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Insects</td>
<td>282</td>
<td>119</td>
<td>28</td>
<td>20</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Total invertebrates</td>
<td>343</td>
<td>131</td>
<td>33</td>
<td>24</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Bacteria & Phytoplasmas</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>0</td>
</tr>
<tr>
<td>Fungi</td>
<td>168</td>
<td>68</td>
<td>23</td>
<td>19</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Nematodes</td>
<td>66</td>
<td>32</td>
<td>0</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>0</td>
</tr>
<tr>
<td>Protozoa</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Not assessed</td>
<td>Not assessed</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^1\) Numbers include organisms with incomplete categorisation.
<table>
<thead>
<tr>
<th>Organism group</th>
<th>Associated with Australian viticulture</th>
<th>Absent from Western Australia or of regional concern</th>
<th>Potential presence on the tablegrape pathway</th>
<th>Potential to establish</th>
<th>Potential for economic consequences</th>
<th>Quarantine pest species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses & Viroids</td>
<td>27</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total pathogens</td>
<td>279</td>
<td>118</td>
<td>34</td>
<td>25</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Total organisms</td>
<td>622</td>
<td>249</td>
<td>67</td>
<td>49</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>
Table 2 Quarantine pest invertebrates associated with fresh imported table grapes

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrophilus mealybug</td>
<td>Pseudococcus calceolariae (Maskell, 1897)</td>
</tr>
<tr>
<td>Citrus planthopper</td>
<td>Colgar peracutum (Walker, 1858)</td>
</tr>
<tr>
<td>Crusader bug</td>
<td>Graptostethus sp.</td>
</tr>
<tr>
<td>European fruit lecanium scale</td>
<td>Parthenolecanium corni corni (Bouché, 1844)</td>
</tr>
<tr>
<td>European wasp</td>
<td>Vespula germanica (Fabricus, 1793)</td>
</tr>
<tr>
<td>Flat grain beetle</td>
<td>Cryptolestes pusillus (Schönherr 1878) BAMA (s22) declared pest</td>
</tr>
<tr>
<td>Grape phylloxera</td>
<td>Daktulosphaira vitifoliae (Fitch, 1855)</td>
</tr>
<tr>
<td>Kanzawa spider mite</td>
<td>Tetranychus kanzawai Kishida, 1927</td>
</tr>
<tr>
<td>Metallic shield bug</td>
<td>Scutiphora pedicellata (Kirby, 1826)</td>
</tr>
<tr>
<td>Peach white scale</td>
<td>Pseudaulacaspis pentagona (Targioni Tozzetti, 1886)</td>
</tr>
<tr>
<td>Queensland fruit fly</td>
<td>Bactrocera (Bactrocera) tryoni (Froggatt, 1897)</td>
</tr>
<tr>
<td>Spanish red scale</td>
<td>Chrysomphalus dictyospermi (Morgan, 1889)</td>
</tr>
<tr>
<td>Native tussock moth</td>
<td>Euproctis paradoxa (Butler, 1886)</td>
</tr>
<tr>
<td>Warehouse beetle</td>
<td>Trogoderma variabile Ballion 1878 BAMA (s22) declared pest</td>
</tr>
<tr>
<td>Common name</td>
<td>Scientific name</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid 1</td>
<td>Apscaviroid Grapevine yellow speckle viroid (GYSVd) strain 1</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid 2</td>
<td>Apscaviroid Grapevine yellow speckle viroid (GYSVd) strain 2</td>
</tr>
<tr>
<td>-</td>
<td>Botryosphaeria iberica A.J.L. Phillips, J. Luque & A. Alves, 2005</td>
</tr>
<tr>
<td>-</td>
<td>Botryosphaeria sarmentosum A.J.L. Phillips, J. Luque & A. Alves, 2005</td>
</tr>
<tr>
<td>Sooty mould</td>
<td>Capnodium elongatum Berk. & Desm., 1849</td>
</tr>
<tr>
<td>Bitter rot</td>
<td>Greeneria uvicola (Berk. & M.A. Curtis) Punith. 1974</td>
</tr>
<tr>
<td>Hop stunt viroid</td>
<td>Hostuviroid Hop stunt viroid (HSVd)</td>
</tr>
<tr>
<td>Grapevine fanleaf virus</td>
<td>Nepovirus Grapevine fanleaf virus (GFLV)</td>
</tr>
<tr>
<td>-</td>
<td>Pestalotiopsis menezesiana (Bres. & Torrend) Bissett, 1983</td>
</tr>
<tr>
<td>-</td>
<td>Pestalotiopsis uvicola (Speg.) Bissett 1983</td>
</tr>
<tr>
<td>Phomopsis cane and leaf spot</td>
<td>Phomopsis viticola (Sacc.) Sacc., 1915</td>
</tr>
<tr>
<td>-</td>
<td>Pilidiella castaneicola (Ellis & Everh)</td>
</tr>
<tr>
<td>Citrus exocortis viroid</td>
<td>Posipiviroid Citrus exocortis viroid (CEVd)</td>
</tr>
</tbody>
</table>
Methodology

Introduction
The categorisation of invertebrate and pathogen species (candidate organism) is a component of the policy review for fresh table grape bunches imported into Western Australia from other states and territories. The categorisation of candidate organisms establishes the quarantine pest status for these organisms.

The methodology employed to determine quarantine pest status conforms to the International Standards for Phytosanitary Measures (ISPM) 2 Framework for Pest Risk Analysis and ISPM 11 Pest Risk Analysis of Quarantine Pests (FAO 2013). The methodology is also in accordance with the methodology outlined by the Australian Department of Agriculture’s predecessor Biosecurity Australia in the Guidelines for Import Risk Analysis (BA 2001).

The internationally accepted criteria of a quarantine pest species has been defined in the International Plant Protection Convention (FAO 1997) as:

‘A pest of potential economic importance to the area endangered thereby and not yet present there, or present but not widely distributed and being officially controlled’, where:

- **Area** is defined as an ‘officially defined country, part of a country or all or parts of several countries’ (FAO 2010).
- **Potential economic importance** is determined by ‘clear indications that the pest is likely to have an unacceptable economic impact (including environmental impact) in the PRA area’ (FAO 2013).
- **Endangered area** is defined as ‘an area where ecological factors favour the establishment of a pest whose presence in the area will result in economically important loss’ (FAO 2010).

The categorisation of candidate organisms also establishes their association with table grape bunches.

Pest categorisation does not establish a risk profile for a quarantine pest species; this is undertaken in the risk assessment component of a pest risk analysis (PRA).

Determining an organism’s quarantine pest status

Association with viticulture in Australia
A list of candidate organisms associated with viticulture production is compiled based on information obtained from:

- organism lists provided by state/territory plant protection officers
- a review of Commonwealth\(^2\), scientific, industry and other literature
- a review of relevant internet sources

\(^2\) Commonwealth import risk analyses are reviewed to identify pests that are present in Australia and associated with table grape bunches in other countries but not from Australian table grape bunches. Commonwealth publications reviewed include import risk analyses for table grapes from Chile (BA 2005), China (BA 2011a), Japan (ADoA 2014) and Korea (BA 2011b) and the USA (AQIS 1999; DAFF 2013).
a review of invertebrate and pathogen specimens residing in collections within Australia

seeking expert opinion.

The candidate organism lists include:

- A taxonomy review to establish the candidate organisms current accepted name.
- A verifying reference establishing the presence or absence of the candidate organism from an Australia state or territory.
- A verifying reference establishing the presence or absence of the candidate organism in Western Australia. A candidate organism that is present in Western Australia is ineligible for consideration as a ‘quarantine pest species’, unless under official control, and is not considered for further evaluation.

A list of candidate organisms associated with viticulture production in Australia is presented in Table 4 to Table 6 for invertebrate organisms and Table 9 to Table 13 for pathogen organisms.

Any candidate organisms not present in Western Australia are assessed further for any association with the table grape bunch pathway.

Association with the table grape bunch pathway

A candidate organism’s association with the table grape pathway is evaluated and presented in Table 7 (invertebrates) and in Table 14 (plant pathogens). This evaluation includes a brief referenced statement regarding the potential of the candidate organism’s association with the table grape pathway. Candidate organism’s are listed as having a ‘Likely’ or ‘Unlikely’ pathway association.

Candidate organisms having an unlikely pathway association are not considered further. An unlikely association with the table grape pathway would result in a ‘negligible’ likelihood of importation should the candidate organism be considered further in the PRA. Where a negligible likelihood occurs in a pest risk assessment, combining any other likelihood will result in a negligible overall probability of entry, establishment and spread. Combining a negligible overall probability of entry, establishment and spread with any estimate of economic impact would result in an unrestricted risk estimate not exceeding the appropriate level of protection (ALOP) of ‘very low’.

In some instances a candidate organism may be considered as having an unlikely pathway association if the pathway reference is very old and no recent records have been found, or where only single records for pathway associations were found.

Any candidate organisms not present in Western Australia and likely to be associated with the table grape bunch pathway are assessed further for their potential to establish and have an unacceptable economic impact (including environmental impact) in Western Australia.

Potential to establish in Western Australia

A candidate organism’s potential to establish within endangered areas in Western Australia is evaluated and presented in Table 8 (invertebrates) and in Table 15 (plant pathogens). An assumption is given that if a host plant is present in Western Australia then some potential exists for candidate organisms to establish within endangered areas in Western Australia. If the potential to establish within endangered areas in Western Australia is assessed to be ‘unlikely’ the candidate organism is not considered further.
Potential economic importance

A candidate organisms potential economic importance should it establish within endangered areas of Western Australia is evaluated and presented in Table 8 for invertebrate organisms and in Table 15 for pathogen organisms. If the potential economic importance should it establish within endangered areas in Western Australia is assessed to be ‘unlikely’ the candidate organism is not considered further.

Final determination

Any candidate organisms not meeting the criteria assessed in the pest categorisation phase are not considered a quarantine pest associated with the table grape pathway and are not evaluated further. Candidate species meeting all criteria for a quarantine pest are eligible for further evaluation through the pest risk assessment process and are presented in Table 2 for invertebrate organisms and Table 3 for pathogen organisms.

Once the quarantine pest status has been validated for a candidate species they undergo pest risk assessment and comparison with the Appropriate Level of Protection (ALOP). For organisms with an unrestricted risk exceeding the ALOP, DAFWA proposes phytosanitary measures that are the least restrictive to trade. This work is undertaken in the pest risk analysis report.
Pest categorisation of invertebrate organisms

Table 4 Snails and slugs associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylommatophora:</td>
<td>Deroceras reticulatum (Müller, 1774)</td>
<td>Kerruish 1997a</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Agriolimacidae</td>
<td>reticulated slug</td>
<td></td>
<td>Qld (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Stylommatophora:</td>
<td>Cornu aspersum (Müller, 1774) also recorded as Helix aspersa and Cantareus aspersa</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Helicidae</td>
<td>common garden snail</td>
<td></td>
<td>Qld (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Stylommatophora:</td>
<td>Cernuella (Cernuella) virgata (Da Costa, 1778) also recorded as Cernuella virgata</td>
<td>Furness 2003c</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Helicidae</td>
<td>common white snail</td>
<td></td>
<td>Qld (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Stylommatophora:</td>
<td>Prietocella barbara (Linnaeus, 1785)</td>
<td>Furness 2003c</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Helicidae</td>
<td>also recorded as Cochlicella barbara small conical snail</td>
<td></td>
<td>NSW (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Stylommatophora:</td>
<td>Theba pisana (Müller, 1774) white Italian snail</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Helicidae</td>
<td></td>
<td></td>
<td>NSW (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Araneae: Thomisidae</td>
<td>Misumena spp. crab spider</td>
<td>DAFF 2013</td>
<td>Aust (DAFF 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Amblydromalus limonicus (Garman & McGregor, 1956) also recorded as Amblyseius laiae & Typhlodromalus laiae predatory mite</td>
<td>Whitney & James 1996</td>
<td>WA (ASCU 2013) Queensland (UQIC 2013) New South Wales (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Amblydromella applegum (Schicha, 1983) also recorded as Typhlodromus applegum predatory mite</td>
<td>Whitney & James 1996</td>
<td>New South Wales (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Amblydromella brisbanensis (Schicha, 1979) also recorded as Typhlodromus brisbanensis predatory mite</td>
<td>ASCU 2013</td>
<td>Queensland (UQIC 2013) New South Wales (ASCU 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 5: Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Amblyseius cabonus group predatory mite</td>
<td>ASCU 2013</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Amblyseius herbicolum (Chant, 1959) also recorded as Amblyseius deleoni predatory mite</td>
<td>Whitney & James 1996</td>
<td>Qld (ASCU 2013) NSW (ASCU 2013) NT (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Amblyseius sturti group predatory mite</td>
<td>ASCU 2013</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Clavidromus transvaalensis (Nesbitt, 1951) also recorded as Typhlodromus transvaalensis</td>
<td>Whitney & James 1996</td>
<td>WA Qld NSW Vic. SA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Euseius elinae (Schicha, 1977) also recorded as Amblyseius elinae</td>
<td>Whitney & James 1996</td>
<td>WA NSW Vic. SA (ASCU 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 5: Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoseiidae</td>
<td>also recorded as Amblyseius victoriensis</td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>predatory mite</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Mesostigmata:</td>
<td>Galendromus occidentalis (Nesbitt, 1951)</td>
<td>James & Whitney 1991</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Phytoseiidae</td>
<td>also recorded as Typhlodromus occidentalis</td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>predatory mite</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Phytoseiidae</td>
<td>also recorded as Amblyseius christinae & Indoseiulus christinae</td>
<td></td>
<td>Tas. (ASCU 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus dieteri (Schica, 1979) also recorded as Amblyseius dieteri predatory mite</td>
<td>James & Whitney 1991</td>
<td>WA (ASCU 2013) NSW (ASCU 2013) Vic. (ASCU 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus harveyi (McMurtry & Schicha, 1987) also recorded as Amblyseius harveyi & Phytodromus harveyi predatory mite</td>
<td>Whitney & James 1996</td>
<td>WA (ASCU 2013) Qld (UQIC 2013) NSW (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus helmi (Schicha, 1987) as recorded as Amblyseius helmi predatory mite</td>
<td>James & Whitney 1991</td>
<td>WA (ASCU 2013) NSW (ASCU 2013) VIC. (ASCU 2013) SA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus loxtoni (Schicha, 1979) also recorded as Amblyseius loxtoni predatory mite</td>
<td>James & Whitney 1991</td>
<td>NSW (ASCU 2013) Vic. (ASCU 2013) SA (ASCU 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus thwaitei (Schicha, 1977)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>also recorded as Amblyseius thwaitei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>predatory mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whitney & James 1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus vanderlindei (Van der Merwe, 1965)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>also recorded as Amblyseius tareensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>predatory mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whitney & James 1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WA (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tas. (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Neoseiulus wearnei near</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>predatory mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASCU 2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WA (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Phytoseiulus fotheringhamiae Denmark & Schicha, 1975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>predatory mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whitney & James 1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WA (Schicha 1987)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tas. (ASCU 2013)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Phytoseius hongkongensis Swirski & Shechter, 1961 predatory mite</td>
<td>ASCU 2013</td>
<td>Qld (UQIC 2013)</td>
<td>NSW (ASCU 2013)</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesostigmata: Phytoseiidae</td>
<td>Proprioseiopsis peltatus (Van der Merwe, 1968) also recorded as Proprioseiopsis ovatus predatory mite</td>
<td>ASCU 2013</td>
<td>Qld (ASCU 2013) NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombidiformes: Tarsonemidae</td>
<td>Phytonemus pallidus (Banks, 1899) cyclamen mite</td>
<td>BA 2011b</td>
<td>WA (ASCU 2009)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td>Trombidiformes: Tarsonemidae</td>
<td>Polyphagotarsonemus latus (Banks, 1904) broad mite</td>
<td>Hely et al. 1982</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Trombidiformes: Tenuipalpidae</td>
<td>Brevipalpus californicus (Banks, 1904) grape bunch mite</td>
<td>James & Charles 2003</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Smith et al. 1997)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombidiformes: Tenuipalpidae</td>
<td>Brevipalpus lewisi McGregor, 1949
citrus flat mite</td>
<td>Buchanan et al. 1980</td>
<td>WA (D Knihinicki 2011, pers. comm. 19 Oct.)
Qld (Brough et al. 1996b)</td>
<td>no</td>
</tr>
<tr>
<td>Trombidiformes: Tenuipalpidae</td>
<td>Brevipalpus obovatus Donnadieu, 1875
privet mite</td>
<td>BA 2005
ADoA 2014</td>
<td>WA (ASCU 2014)
Qld (Walter 1999)
NSW (ASCU 2014)
Vic. (VAIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Trombidiformes: Tenuipalpidae</td>
<td>Brevipalpus phoenicis (Geijskes, 1939)
passionvine mite</td>
<td>ADoA 2014</td>
<td>WA (Slaven 2014)
Qld (Walter 1999)
NSW (ASCU 2014)
SA (WINC 2014)
NT (NTEIC 2014)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombidiformes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>Bryobia praetiosa Koch, 1835</td>
<td>BA 2005</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA 2011b</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clover mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>Bryobia rubrioculus (Scheuten, 1857)</td>
<td>BA 2005</td>
<td>WA (Gutierrez & Schicha 1983)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Gutierrez & Schicha 1983)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas (Gutierrez & Schicha 1983)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bryobia mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>Eotetranychus sexmaculatus (Riley, 1890)</td>
<td>ASCU 2013</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>also recorded as Eotetranychus sexmaculatus_near six spotted mite</td>
<td>ASCU 2013</td>
<td>ASCU 2013</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombidiformes:</td>
<td>Eutetranychus orientalis (Klein, 1936)</td>
<td>UQIC 2013</td>
<td>WA (UQIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Tetanychidae</td>
<td>Oriental red mite</td>
<td></td>
<td>Qld (UQIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td>Oligonychus coffeae (Nietner, 1861)</td>
<td>Jeppson et al. 1975</td>
<td>WA (Poole et al. 1998)</td>
<td>no</td>
</tr>
<tr>
<td>Tetanychidae</td>
<td>tea red spider mite</td>
<td></td>
<td>QLD (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Gutierrez & Schicha 1983)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td>Oligonychus punicae</td>
<td>BA 2005</td>
<td>NT (NTEIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Tetanychidae</td>
<td>avocado brown mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetanychidae</td>
<td>citrus red mite</td>
<td></td>
<td>BA 2011b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Mites and spiders associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombidiformes:</td>
<td>Panonychus ulmi (Koch, 1835)</td>
<td>James & Charles 2003</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>European red mite</td>
<td></td>
<td>Qld (Thwaite 1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td>Petrobia latens (Müller, 1776)</td>
<td>BA 2005</td>
<td>WA (Murray et al. 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>brown wheat mite</td>
<td>ADoA 2014</td>
<td>Qld (Broadley 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Miller 1966)</td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td>Tetranychus kanzawai Kishida, 1927</td>
<td>BA 2011b</td>
<td>Qld (Gutierrez & Schicha 1983)</td>
<td>yes</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>kanzawa spider mite</td>
<td>ADoA 2014</td>
<td>NSW (Gutierrez & Schicha 1983)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kondo 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trombidiformes:</td>
<td>Tetranychus lambi Pritchard & Baker, 1955</td>
<td>ASCU 2013</td>
<td>WA (UQIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>banana spider mite</td>
<td></td>
<td>Qld (UQIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Trombidiformes: Tetranthididae</td>
<td>Tetranychus neocaledonicus (André, 1933) vegetable spider mite</td>
<td>UQIC 2013</td>
<td>WA (UQIC 2013), Qld (UQIC 2013), NSW (ASCU 2013), NT (NTEIC 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Bostrychopsis jesuita (Fabricius, 1755) large auger beetle</td>
<td>Goodwin et al. 2003</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) SA (WINC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Sinoxylon sp. auger beetle</td>
<td>BA 2011a</td>
<td>WA (WACALM 2014) Qld (UQIC 2014) NSW (ASCU 2014) Tas. (TPPD 2014) SA (ANIC 2014) NT (NTEIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Sinoxylon anae Lesne, 1897 auger beetle</td>
<td>JD Swan 2011, pers. comm.</td>
<td>NT (NTEIC 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Tristaria grousellei Reitter, 1878</td>
<td>ASCU 2013</td>
<td>WA (ANICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ANICDb 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Xylobosca decisa Lesne, 1906</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (UQIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Xylopsocus capucinus (Fabricius, 1781) false powderpost beetle</td>
<td>ADoA 2014 Lesne 1924 cited in Fischer 1950; Woodruff et al. 2014</td>
<td>Qld (ASCU 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Coleoptera: Bostrichidae</td>
<td>Xylothrips flavipes (Illiger, 1801) auger beetle</td>
<td>ADoA 2014</td>
<td>Qld (ANIC 2014) NSW (ASCU 2014) Vic. (FCNI 2014) NT (ANIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Cantharidae</td>
<td>Chauliognathus lugubris (Fabricius, 1801) also recorded as Chauliognathus pulchellus plague soldier beetle</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013) Qld (ASCU 2013) NSW (ASCU 2013) Vic. (VAIC 2013) Tas. (TPPD 2013) SA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Coleoptera: Cerambycidae</td>
<td>Acalolepta mixta (Hope, 1841) also recorded as Acalolepta vastator and Monohammus mixus fig longicorn</td>
<td>Goodwin et al. 2003</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (UQIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Goodwin et al. 1994)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Goodwin et al. 1994)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Cerambycidae</td>
<td>Chlorophorus annulare (Fabricius, 1787) bamboo longicorn beetle</td>
<td>Mattson et al. 2007</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA 2011b</td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Cerambycidae</td>
<td>Didymocantha obliqua Newman, 1840</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Cerambycidae</td>
<td>Penthea (Penthea) pardalis (Newman, 1842)</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Cerambycidae</td>
<td>Platyomopsis egena</td>
<td>ASCU 2013</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Altica gravida (Blackburn, 1896) also recorded as Haltica gravida metallic flea beetle</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Arsipoda chrysis (Olivier, 1808)</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Colaspoides foveiventris Lea, 1915 lucerne leafeating beetle</td>
<td>QDPC 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Colaspoides picticornis Lea, 1915</td>
<td>QDPC 2013</td>
<td>Qld</td>
<td>(QDPC 2013) yes</td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Monolepta australis (Jacoby, 1882)</td>
<td>Kerruish 1997a</td>
<td>WA, Qld, NSW, NT</td>
<td>(ICDb 2013) (QDPC 2013) (ASCU 2013) (NTEIC 2013) no</td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Oulema (Oulema) rufotincta (Clark, 1866)</td>
<td>ASCU 2013</td>
<td>WA, Qld, NSW, Vic., NT</td>
<td>(ICDb 2013) (QDPC 2013) (ASCU 2013) (VAIC 2013) (NTEIC 2013) no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Rhyparida dimidiata Baly, 1861 sugarcane leaf beetle</td>
<td>QDPC 2013</td>
<td>Qld (QDPC 2013), NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Scelodonta brevipilis Lea, 1915</td>
<td>QDPC 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Chrysomelidae</td>
<td>Xanthogaleruca luteola (Müller 1766) elm leaf beetle</td>
<td>DAFF 2013</td>
<td>NSW (ASCU 2014), Vic. (Lefoe et al. 2014), Tas. (TPPD 2014), SA (Lefoe et al. 2014)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Coccinellidae</td>
<td>Cryptolaemus montrouzieri montrouzieri Mulsant, 1853</td>
<td>Furness & Charles 2003</td>
<td>WA (VAIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Cryptolaemus montrouzieri</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mealybug ladybird</td>
<td></td>
<td>NSW (FCNI 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Coccinellidae</td>
<td>Micraspis frenata (Erichson, 1842)</td>
<td>ASCU 2013</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>striped ladybird beetle</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Coccinellidae</td>
<td>Rhizobius hirtellus Crotch, 1874</td>
<td>Furness & Charles 2003</td>
<td>SA (Furness 1976)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>also recorded as Rhizobius ruficollis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ladybird beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Coleoptera: Coccinellidae</td>
<td>Stethorus spp.</td>
<td>James & Charles 2003</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>3 species present in Aust, all 3 species (S. histrio, nigripes & S. vagans) present in WA</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ladybird beetle</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Ambrosiodmus rubricollis Wood & Bright, 1992</td>
<td>BA 2011b</td>
<td>WA absent</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>bark beetle</td>
<td></td>
<td>Aust (Rabaglia et al. 2006 cited in ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Asynonychus cervinus (Boheman, 1840)</td>
<td>TPPD 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Pantomorus cervinus</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuller’s rose weevil</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Atrichonotus minimus Blanchard, 1851 also recorded as Atrichonotus taeniátulus small lucerne weevil</td>
<td>ASCU 2013</td>
<td>WA NSW (ICDb 2013) (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Axionicus insignis Pascoe, 1869 Currajong weevil</td>
<td>ASCU 2013</td>
<td>Qld NSW Vic. (QDPC 2013) (ASCU 2013) (VAIC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Cryptolestes pusillus (Schönherr 1878) flat grain beetle BAMA (s22) declared pest</td>
<td>DAFF 2013</td>
<td>WA Qld NSW Tas. NT (Moulden 1979) (QDPC 2014) (ASCU 2014) (TPPD 2014) (NTEIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Dryocoetiops coffeae (Eggers, 1923) bark beetle</td>
<td>BA 2011a</td>
<td>WA Aust absent (ABRS 2009)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Ecrizothis inaequalis Blackburn, 1899 gooseberry weevil</td>
<td>Kerruish 1997a</td>
<td>Vic. (VAIC 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
| Coleoptera: Curculionidae | *Ethemaia sellata* Pascoe, 1883
 greybanded leaf weevil | ASCU 2013 | WA (ICDb 2013)
 Qld (QDPC 2013)
 NSW (ASCU 2013)
 Vic. (VAIC 2013)
 SA (WINC 2013) | no |
| Coleoptera: Curculionidae | *Graphognathus leucoloma* (Boheman)
 also recorded as *Naupactus leucoloma*
 whitefringed weevil | Sainty 1991 | WA (ICDb 2013)
 Qld (QDPC 2013)
 NSW (ASCU 2013)
 Vic. (VAIC 2013)
 Tas. (TPPD 2013)
 SA (WINC 2013) | no |
| Coleoptera: Curculionidae | *Hypothenemus eruditus* Westwood, 1836
 shot-hole wood borer | ADoA 2014
 BA 2011a
 BA 2011b
 Mitchell & Maddox 2010 | Qld (QDPC 2014)
 NSW (FCNI 2014) | yes |
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Hypurus bertrandii (Perris 1852)</td>
<td>DAFF 2013</td>
<td>Qld (McFadyen 1994)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>portulaca leafmining weevil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Leptopius robustus (Boheman)</td>
<td>VAIC 2011</td>
<td>NSW (UQIC 2013) Vic. (VAIC 2013) SA (WINC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>fruit-tree root weevil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Leptopius squalidus Boheman</td>
<td>Kerruish 1997a</td>
<td>Qld (ASCU 2013) NSW (ASCU 2013) Vic. (ASCU 2013) SA (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>fruit tree root weevil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Lixus mastersi Pascoe</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) SA (WINC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Mandalotus sp.</td>
<td>ICDb 2013</td>
<td>WA (ICDb 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>mandalotus weevil</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Notiosomus sp.</td>
<td>ICDb 2013</td>
<td>WA (ICDb 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Orthorhinus cylindrirostris Schoenherr, 1825</td>
<td>Goodwin et al. 2003</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>elephant weevil</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera:</td>
<td>Orthorhinus klugi Boheman</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Curculionidae</td>
<td>vine weevil</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Otiorhynchus cribricollis (Gyllenhal)</td>
<td>Fisher & Learmonth</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Curculionidae</td>
<td>apple weevil</td>
<td>2012</td>
<td>Qld (ANICDb 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Otiorhynchus (Zustalestus) rugosostriatus (Goeze 1777)</td>
<td>BA 2005</td>
<td>NSW (ANIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Curculionidae</td>
<td>rough strawberry weevil</td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Otiorhynchus sulcatus (Fabricius, 1775)</td>
<td>Bailey & Furness 2003</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Curculionidae</td>
<td>black vine weevil</td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Perperus innocuus Boheman, 1842</td>
<td>ASCU 2013</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>broad-backed vine weevil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Perperus lateralis Lea, 1908</td>
<td>Kerruish 1997a</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>white striped weevil</td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Phlyctinus callosus Schöenherr, 1834</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>garden weevil</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Sitona discoideus Gyllenhal, 1834</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>sitona weevil</td>
<td></td>
<td>Qld (ANICDb 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Steriphus caudatus (Pascoe) spinetailed weevil</td>
<td>Kerruish 1997a</td>
<td>NSW (ASCU 2013) Vic. (UQIC 2013) SA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Coleoptera: Curculionidae</td>
<td>Xyleborinus saxesenii (Ratzeburg, 1837) also recorded as Xyleborus saxesenii (Ratzeburg, 1837)</td>
<td>BA 2011b</td>
<td>WA (Abbott 1995) Qld (QDPC 2014) NSW (ASCU 2014) Vic (TPPD 2014) Tas. (TFIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Coleoptera: Dermestidae</td>
<td>Attagenus (Attagenus) unicolor (Brahm, 1791) black carpet beetle</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013) NSW (ASCU 2013) Vic (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Dermestidae</td>
<td>Trogoderma variabile Ballion 1878 warehouse beetle BAMA (s22) declared pest</td>
<td>DAFF 2013</td>
<td>WA (ICDb 2014) NSW (ASCU 2014) Vic. (VAIC 2014) SA (WINC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Coleoptera: Elateridae</td>
<td>Agrypnus sp.</td>
<td>VAIC 2011</td>
<td>WA (ICDb 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Elateridae</td>
<td>Conoderus sp.</td>
<td>VAIC 2011</td>
<td>WA (ICDb 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (FCNI 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TFIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Elateridae</td>
<td>Glyphochilus championi Candèze, 1882</td>
<td>ICDb 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Lathridiidae</td>
<td>Corticaria japonica (Reitter)</td>
<td>minute mould beetle</td>
<td>VAIC 2011</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6: Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Nitidulidae</td>
<td>Aethina concolor (Macleay) hibiscus flower beetle</td>
<td>ASCU 2013</td>
<td>Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Coleoptera: Nitulidae</td>
<td>Carpophilus humeralis (Fabricius, 1758) also recorded as Urophorus humeralis dried fruit beetle</td>
<td>Buchanan et al. 1984</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) Tas. (TPPD 2013) SA (WINC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Coleoptera: Scarabaeidae</td>
<td>Apogonia sp.</td>
<td>JD Swan 2011, pers. comm.</td>
<td>Qld (ANICDb 2013) NT (JD Swan 2011, pers. comm.)</td>
<td>yes</td>
</tr>
<tr>
<td>Coleoptera: Scarabaeidae</td>
<td>Dilochothis atripennis (Macleay, 1863) flower chafer</td>
<td>ASCU 2013</td>
<td>WA (ANIC 2013) Qld (QDPC 2013) NSW (ASCU 2013) NT (ANIC 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Scarabaeidae</td>
<td>Diphucephala colaspoidoides (Gyllenhal, 1817)</td>
<td>VAIC 2011</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>green scarab beetle</td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Scarabaeidae</td>
<td>Diphucephala nigritarsis Lea 1917</td>
<td>ASCU 2013</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>green scarab beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Scarabaeidae</td>
<td>Diphucephala nitidicollis Macleay, 1886</td>
<td>ASCU 2013</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>green scarab beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera: Scarabaeidae</td>
<td>Diphucephala pulchella Waterhouse, 1837</td>
<td>ASCU 2013</td>
<td>NSW (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>also recorded as Diphucephala smaragdula</td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>green scarab beetle</td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
</tbody>
</table>

46
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>African black beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Ahasverus advena (Waltl, 1832)</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Silvanidae</td>
<td>foreign grain beetle</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Oryzaephilus surinamensis (Linnaeus, 1758)</td>
<td>AQIS 1999</td>
<td>WA (ICDb 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Silvanidae</td>
<td>saw toothed grain beetle</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAMA (s22) Declared Pest</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Philonthus spp. Stephens, 1829</td>
<td>DAFF 2013</td>
<td>WA (ICDb 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Staphylinidae</td>
<td>rove beetle</td>
<td></td>
<td>Qld (Roth et al. 1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera:</td>
<td>Adelium tenebroides Erichson, 1842</td>
<td>VAIC 2011</td>
<td>Vic. (VAIC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Tenebrionidae</td>
<td>also recorded as Adelium tenebrioides</td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera: Tenebrionidae</td>
<td>Gonocephalum elderi (Blackburn, 1892) vegetable weevil</td>
<td>ICDb 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Diptera: Psychodidae</td>
<td>Psychoda alternata Say, 1824</td>
<td>DAFF 2013</td>
<td>NSW (Evenhuis 1989) Tas. (Evenhuis 1989)</td>
<td>yes</td>
</tr>
<tr>
<td>Diptera: Syrphidae</td>
<td>Eristalinus (Lathyrophthalmus) aeneus (Scopoli, 1763)</td>
<td>DAFF 2013</td>
<td>NSW (Evenhuis 1989) Vic. (Evenhuis 1989)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diptera: Tephritidae</td>
<td>Bactrocera (Bactrocera) aquilonis (May, 1965)</td>
<td>JD Swan 2011, pers. comm.</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Northern Territory fruit fly</td>
<td></td>
<td>Qld (ICDb 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Diptera: Tephritidae</td>
<td>Bactrocera (Bactrocera) neohumeralis (Hardy, 1951)</td>
<td>White & Elson-Harris 1992</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>lesser Queensland fruit fly</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Diptera: Tephritidae</td>
<td>Bactrocera (Bactrocera) tryoni (Froggatt, 1897)</td>
<td>Jessup et al. 1998</td>
<td>WA Eradicated (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Queensland fruit fly</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Diptera: Tephritidae</td>
<td>Ceratitis capitata (Wiedemann, 1824)</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Mediterranean fruit fly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BAMA (s22) Declared Pest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diptera: Tephritidae</td>
<td>Sphenella ruticeps (Macquart, 1851) misidentified as Sphenella marginate</td>
<td>WINC 2013</td>
<td>WA (Hancock et al. 2000) Qld (UQIC 2013) NSW (ASCU 2013) Vic. (ANICDb 2013) Tas. (UQIC 2013) SA (WINC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Aleyrodidae</td>
<td>Aleurocanthus spiniferus (Quaintance, 1903) spiny whitefly</td>
<td>ADoA 2014 BA 2011b Cioffi et al. 2013</td>
<td>Qld (QDPC 2014) NSW (Gillespie 2012) NT (NTEIC 2014)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Aphis (Aphis) spiraecola Patch, 1914 spiraea aphid</td>
<td>BA 2005
BA 2011b
ADoA 2014</td>
<td>WA
Qld
NSW
Vic.
Tas.
SA</td>
<td>(ICDb 2014)
(QDPC 2014)
(ASCU 2014)
(VAIC 2014)
(TPPD 2014)
(VAIC 2014)</td>
</tr>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Aploneura ampelina (Mokrzecky 1896)</td>
<td>ASCU 2013</td>
<td>NSW</td>
<td>(ASCU 2013)</td>
</tr>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Hyperomyzus (Hyperomyzus) lactucae (Linnaeus, 1758) sowthistle aphid</td>
<td>QDPC 2013</td>
<td>WA
Qld
NSW
Vic.
Tas.
SA</td>
<td>(ICDb 2013)
(QDPC 2013)
(ASCU 2013)
(VAIC 2013)
(TPPD 2013)
(VAIC 2013)</td>
</tr>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Geoica lucifuga (Zehntner, 1897) sugarcane root aphid</td>
<td>ASCU 2013</td>
<td>Qld
NSW
Vic.
Tas.</td>
<td>(QDPC 2013)
(ASCU 2013)
(VAIC 2013)
(TPPD 2013)</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Macrosiphum (Macrosiphum) euphorbiae (Thomas, 1878) potato aphid</td>
<td>TPPD 2013</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) Tas. (TPPD 2013) SA (WINC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Myzus (Nectarosiphon) persicae (Sulzer, 1776) green peach aphid</td>
<td>QDPC 2013</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) Tas. (TPPD 2013) SA (WINC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Aphididae</td>
<td>Pemphigus bursarius (Linnaeus, 1758) also recorded as Pemphigus sp. poplar gall aphid</td>
<td>QDPC 2013</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) Tas. (TPPD 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Anzygina zealandica (Myers, 1923) also recorded as Zygina zealandica yellow leafhopper</td>
<td>VAIC 2011</td>
<td>WA (ICDb 2013) Qld (ASCU 2013) NSW (ASCU 2013) VIC. (VAIC 2013) Tas. (TPPD 2013) SA (ASCU 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Arawa pulchra Knight, 1975</td>
<td>VAIC 2011</td>
<td>WA (ABRS 2013) NSW (ASCU 2013) Vic. (VAIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Austroasca viridigrisea (Paoli, 1936)</td>
<td>VAIC 2011</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>vegetable leafhopper</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VIC. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Balclutha saltuella (Kirschbaum, 1868)</td>
<td>VAIC 2011</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>grass leafhopper</td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Batracomorphus angustatus (Osborn, 1934)</td>
<td>Osmelak et al. 1989</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>large green jassid</td>
<td></td>
<td>Qld (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Orosius orientalis (Matsumura, 1914)</td>
<td>Osmelak et al. 1989</td>
<td>WA (ASCU 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Orosius argentatus</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>common brown leafhopper</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Scaphoideus spp. Uhler, 1889</td>
<td>AQIS 1999</td>
<td>WA (ASCU 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>leafhopper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Xestocephalus tasmaniensis Evans, 1938</td>
<td>VAIC 2011</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ABRS 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Cicadellidae</td>
<td>Zygina sp.</td>
<td>VAIC 2011</td>
<td>WA (ASCU 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Cicadidae</td>
<td>Melampsalta sp.</td>
<td>Greenup 1967</td>
<td>NSW (Greenup 1967)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>black cicada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Cixiidae</td>
<td>Ozoliarus pitta Löcker, 2006</td>
<td>ASCU 2013</td>
<td>Qld (ABRS 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Coccus hesperidum Linnaeus, 1758</td>
<td>QDPC 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>soft brown scale</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Coccus longulus (Douglas, 1887)</td>
<td>Brimblecombe 1962a</td>
<td>WA (QDPC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Coccus elongatus</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>long soft scale</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Parasaissetia nigra (Nietner, 1861)</td>
<td>Hely et al. 1982</td>
<td>WA (ANIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>nigra scale</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Hely et al. 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Parthenolecanium corni corni (Bouché, 1844)</td>
<td>BA 2005
BA 2011b
DAFF 2013
ADoA 2014</td>
<td>Tas.
Vic.
NSW (TPPD 2014)
(WINC 2014)
(Snare 2006)</td>
<td>yes</td>
</tr>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Parthenolecanium persicae persicae (Fabricius, 1776) also recorded as Eulecanium berberidis and Eulecanium persicae grapevine scale</td>
<td>Fisher & Learmonth 2012</td>
<td>WA
Qld
NSW
Vic.
Tas.
SA (VAIC 2013)
(ASCU 2013)
(VAIC 2013)
(TTPD 2013)
(WINC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Parthenolecanium pruinum (Coquillett, 1891) also recorded as Eulecanium pruinum frosted scale</td>
<td>Furness 2003a</td>
<td>WA
NSW
Vic.
Tas.
SA (SE Learmonth 2010, pers. comm.)
(ASCU 2013)
(WINC 2013)
(TTPD 2013)
(WINC 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Saissetia coffeae Walker, 1852</td>
<td>Ben-Dov et al. 2010</td>
<td>WA (QDPC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>hemispherical scale</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Coccidae</td>
<td>Saissetia oleae (Olivier, 1791)</td>
<td>AQIS 1999</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>black scale</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Aonidiella orientalis (Newstead, 1894) Oriental scale</td>
<td>QDPC 2013</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Aspidiotus destructor Signore, 1869</td>
<td>QDPC 2013</td>
<td>WA (QDPC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>transparent scale</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Aspidiotus nerii Bouche, 1833</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>ivy scale</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Chrysomphalus aonidum (Linnaeus, 1758)</td>
<td>Brimblecombe 1962a</td>
<td>WA (QDPC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Chrysomphalus ficus</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>circular black scale</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Chrysomphalus dictyospermi (Morgan, 1889)</td>
<td>ADoA 2014</td>
<td>Qld (QDPC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Spanish red scale</td>
<td>Miller & Davidson 2005; Ben-Dov 2014a</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Diaspidiotus ancyclus (Putnam, 1878)</td>
<td>BA 2005</td>
<td>Qld (QDPC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Putnam scale</td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Diaspidiotus perniciosus (Comstock, 1881)</td>
<td>Brimblecombe 1962b</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Quadraspidiotus perniciosus</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San José scale</td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Brookes & Hudson 1969)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Diaspis boisduvalii Signoret, 1869</td>
<td>BA 2011b</td>
<td>Qld (QDPC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>orchid scale</td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Duplaspidiotus claviger (Cockerell, 1901) dupla scale</td>
<td>Brimblecombe 1962a</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Hemiberlesia lataniae (Signoret, 1869) latana scale</td>
<td>Brimblecombe 1962a</td>
<td>WA Qld (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (QDPC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspididae</td>
<td>Lopholeucaspis japonica (Cockerell, 1897)</td>
<td>BA 2011b</td>
<td>NT</td>
<td>(ABRS 2009)</td>
</tr>
<tr>
<td></td>
<td>Japanese baton scale; pear white scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspididae</td>
<td>Parlatoria camelliae Comstock, 1883</td>
<td>BA 2011b</td>
<td>WA</td>
<td>absent (BA 2011b)</td>
</tr>
<tr>
<td></td>
<td>camellia parlatoria scale</td>
<td></td>
<td>Aust</td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspididae</td>
<td>Parlatoria oleae (Clovée, 1880)</td>
<td>AQIS 1999</td>
<td>WA</td>
<td>(Learmonth 2012)</td>
</tr>
<tr>
<td></td>
<td>olive parlatoria scale</td>
<td>BA 2011a</td>
<td>Qld</td>
<td>(BA 2011a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(BA 2011a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspididae</td>
<td>Pinnaspis strachani (Cooley, 1889)</td>
<td>QDPC 2013</td>
<td>WA</td>
<td>(ICDb 2013)</td>
</tr>
<tr>
<td></td>
<td>hibiscus snow scale</td>
<td></td>
<td>Qld</td>
<td>(QDPC 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(ASCU 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>(Brookes 1964 cited in ADoA 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT</td>
<td>(NTEIC 2013)</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Diaspididae</td>
<td>Pseudaulacaspis pentagona (Targioni-Tozzetti, 1886) peach white scale</td>
<td>BA 2011b BA 2011a ADoA 2014</td>
<td>Qld NSW (QDPC 2014) (ASCU 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Hemiptera: Eriococcidae</td>
<td>Sphaerococcopsis inflatipes (Maskell, 1893)</td>
<td>WINC 2013</td>
<td>Qld NSW Vic. (QDPC 2013) (ASCU 2013) (WINC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Hemiptera: Lygaeidae</td>
<td>Graptostethus sp. crusader bug</td>
<td>JD Swan 2011, pers. comm.</td>
<td>WA Qld Tas. NT (ICDb 2013) (QDPC 2013) (TPPD 2013) (JD Swan 2011, pers. comm.)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rutherglen bug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Lygaeidae</td>
<td>Oxycarenus (Oxycarenus) arctatus (Walker, 1873)</td>
<td>Hely et al. 1982</td>
<td>WA (ABRS 2013) Qld (UQIC 2013) NSW (ASCU 2013) Vic. (ABRS 2013) SA (ABRS 2013) NT (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>coon bug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Lygaeidae</td>
<td>Spilostethus decoratus (Stål, 1866)</td>
<td>ASCU 2013</td>
<td>Qld (UQIC 2013) NSW (ASCU 2013) NT (ABRS 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>milkweed bug</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Lygaeidae</td>
<td>Spilostethus hospes (Fabricius, 1794) milkweed bug</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013) Qld (QDPC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) SA (ANIC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Miridae</td>
<td>Campylomma liebknechti (Girault, 1934) apple dimpling bug</td>
<td>VAIC 2011</td>
<td>WA (ICDb 2013) Qld (UQIC 2013) NSW (ASCU 2013) Vic. (VAIC 2013) SA (WINC 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Miridae</td>
<td>Coridromius sp. Coridromius variegatus (Montrouzier, 1861) is monotypic and is present in WA.</td>
<td>VAIC 2011</td>
<td>WA (ABRS 2013) Qld (ABRS 2013) NSW (VAIC 2013) Vic. (VAIC 2013) Tas. (TPPD 2013) SA (ABRS 2013) NT (ABRS 2013)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Miridae</td>
<td>Creontiades dilutus (Stål, 1859)</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>green mirid</td>
<td></td>
<td>Qld (UQIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ANIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Monophlebidae</td>
<td>Icerya purchasi purchasi Maskell, 1879</td>
<td>ASCU 2013</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>cottony cushion scale</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Monophlebidae</td>
<td>Icerya seychellarum seychellarum (Westwood, 1855)</td>
<td>ADoA 2014</td>
<td>WA (QDPC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>common white mealybug</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Pentatomidae</td>
<td>Cermatulus nasalis (Westwood, 1837) predatory shield bug</td>
<td>VAIC 2011</td>
<td>WA (ABRS 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Pentatomidae</td>
<td>Nezara viridula (Linnaeus, 1758) green vegetable bug</td>
<td>Hely et al. 1982</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (UQIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Phyloxeridae</td>
<td>Daktulosphaira vitifoliae (Fitch, 1855) grape phylloxera</td>
<td>Buchanan et al. 2003</td>
<td>Qld (Boehm 1996) NSW (ASCU 2013) Vic. (VAIC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Dysmicoccus brevipes (Cockerell, 1893) pineapple mealybug</td>
<td>ADoA 2014</td>
<td>WA (ICDb 2014) Qld (QDPC 2014) NSW (ASCU 2014) SA (WINC 2014) NT (NTEIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Ferrisia virgata (Cockerell, 1893) striped mealybug</td>
<td>Ben-Dov et al. 2010</td>
<td>WA (QDPC 2013) Qld (QDPC 2013) NSW (ASCU 2013) NT (NTEIC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Geococcus coffeae Green, 1933 coffee root mealybug</td>
<td>Williams 1985</td>
<td>NT (Williams 1985)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera:</td>
<td>Maconellicoccus hirsutus (Green, 1908)</td>
<td>Ben-Dov et al. 2010</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Pseudococcidae</td>
<td>hibiscus mealybug</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td>(QDPC 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ANIC 2013)</td>
<td>(NTEIC 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td>Nipaecoccus viridis (Newstead, 1894)</td>
<td>Ben-Dov et al. 2010</td>
<td>WA (QDPC 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Pseudococcidae</td>
<td>spherical mealybug</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td>Phenacoccus aceris (Signoret, 1875)</td>
<td>BA 2011b</td>
<td>NSW (ASCU 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Pseudococcidae</td>
<td>apple mealybug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td>Planococcus citri (Risso, 1813)</td>
<td>Williams 1985</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Pseudococcidae</td>
<td>citrus mealybug</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Pseudococcus calceolariae (Maskell, 1897)</td>
<td>Williams 1985</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>citrophilus mealybug</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Pseudococcus longispinus (Targioni-Tozzetti, 1867)</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>long-tailed mealybug</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Pseudococcus viburni (Signoret, 1875)</td>
<td>Williams 1985</td>
<td>WA (QDPC 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Pseudococcus affinis</td>
<td></td>
<td>Qld (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuber mealybug</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Pseudococcidae</td>
<td>Trionymus sp.</td>
<td>TPPD 2013</td>
<td>Qld (QDPC 2013) NSW (ASCU 2013) Tas. (TPPD 2013) SA (WINC 2013)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Psyllidae</td>
<td>Australopsylla sp.</td>
<td>VAIC 2011</td>
<td>WA (ICDb 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QLD (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Psyllidae</td>
<td>Blastopsylla sp.</td>
<td>VAIC 2011</td>
<td>WA (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QLD (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (VAIC 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2011)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera: Pyrrhocoridae</td>
<td>Dysdercus (Paradysdercus) sidae sidae Montrouzier, 1861</td>
<td>pale cotton stainer</td>
<td>Hely et al. 1982</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WA (ICDb 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QLD (QDPC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Hely et al. 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera:</td>
<td>Leptocoris mitellatus Bergroth, 1916</td>
<td>ASCU 2011</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Rhopalidae</td>
<td>also recorded as Leptocoris mitellata</td>
<td></td>
<td>Qld (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>leptocoris bug</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td>Dieuches maculicollis (Walker, 1872)</td>
<td>WINC 2013</td>
<td>Qld (QDPC 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Rhyparochromidae</td>
<td>also recorded as Dieuches atricornis</td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ABRS 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td>Scolypopa australis (Walker, 1851)</td>
<td>Kerruish 1997a</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Ricaniidae</td>
<td>passionvine hopper</td>
<td></td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2013)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera:</td>
<td>Lampronimera senator (Fabricius, 1803)</td>
<td>JD Swan 2011, pers.</td>
<td>WA (ICDb 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Scutelleridae</td>
<td>green jewel bug</td>
<td>comm.</td>
<td>Qld (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera: Scutelleridae</td>
<td>Scutiphora pedicellata (Kirby, 1826) metallic shield bug</td>
<td>Hely et al. 1982</td>
<td>Qld (VAIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera: Braconidae</td>
<td>Apanteles tasmanicus Cameron, 1912 as Dolichogenidea tasmanica (Cameron, 1912) parasitic wasp</td>
<td>Bailey et al. 2003</td>
<td>Vic. (VAIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera: Encyrtidae</td>
<td>Anagyrus fusciventris (Girault, 1915) parasitic wasp</td>
<td>Furness & Charles 2003</td>
<td>NSW (VAIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Hymenoptera: Encyrtidae</td>
<td>Metaphycus lounsburyi (Howard, 1898) parasitic wasp</td>
<td>Furness 2003a</td>
<td>NSW (VAIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (VAIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera: Encyrtidae</td>
<td>Tetracnemoidea brevicornis (Girault, 1915) parasitic wasp</td>
<td>Furness & Charles 2003</td>
<td>Qld (VAIC 2011) NSW (VAIC 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenoptera: Vespidae</td>
<td>Polistes chinensis antennalis Perkins, 1905</td>
<td>BA 2011a, BA 2011b, ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Asian paper wasp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>European wasp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoptera: Mastotermitidae</td>
<td>Mastotermes darwiensis Frogbatt, 1897</td>
<td>NTEIC 2011</td>
<td>WA (ICDb 2014), Qld (UQIC 2014), NSW (UQIC 2014), NT (NTEIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>giant northern termite</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoptera: Rhinotermitidae</td>
<td>Coptotermes acinaciformis acinaciformis (Froggatt, 1898)</td>
<td>Swaine et al. 1991</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>subterranean termite</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (FCNI 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Isoptera: Rhinotermitidae</td>
<td>Heterotermes occiduus (Hill, 1927)</td>
<td>JD Swan 2011, pers. comm.</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td>Isoptera: Termitidae</td>
<td>Microcerotermes serratus (Froggatt, 1898)</td>
<td>JD Swan 2011, pers. comm.</td>
<td>WA (ANIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Crambidae</td>
<td>Conogethes punctiferalis (Guenée, 1854)</td>
<td>BA 2011b</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>yellow peach moth</td>
<td>BA 2011a</td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Gelechiidae</td>
<td>Echiomima sp.</td>
<td>Goodwin et al. 2003</td>
<td>NSW (ASCU 2014) SA (Goodwin et al. 2003)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>vine borer moth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>apple looper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Herminiidae</td>
<td>Simplicia caeneusalis (Walker, 1859)</td>
<td>ASCU 2011</td>
<td>NSW NT (ASCU 2011 NTEIC 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>omnivorous tussock moth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Lepidoptera: Lymantriidae</td>
<td>Euproctis paradoxa (Butler, 1886)</td>
<td>Hely et al. 1982</td>
<td>Qld (UQIC 2014), NSW (FCNI 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>also recorded as Porthesia paradoxa (Butler) native tussock moth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Agarista agricola Donovan, 1805</td>
<td>Common 1990</td>
<td>Qld (UQIC 2014), NSW (ASCU 2014), NT (Common 1990)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Absent from WA - single record from 1954 painted vine moth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>
| Lepidoptera: Noctuidae | *Agrotis munda* Walker, 1857 pink cutworm | Fisher & Learmonth 2012 | WA (ICDb 2014)
Qld (UQIC 2014)
NSW (ASCU 2014)
Vic. (VAIC 2014)
Tas. (TPPD 2014)
SA (WINC 2014)
NT (NTEIC 2014) | no |
| Lepidoptera: Noctuidae | *Anomis flava* (Fabricius, 1775) cotton looper | ADoA 2014 | WA (ICDb 2014)
NSW (ASCU 2014)
NT (NTEIC 2014)
Qld (QDPC 2014) | no |
| Lepidoptera: Noctuidae | *Arcte coerula* (Guenée, 1852) ramie moth | BA 2011b
ADoA 2014 | WA Absent
Aust. (Nielsen et al. 1996) | yes |
| Lepidoptera: Noctuidae | *Argyropleidia subaspersa* (Walker) | Common 1990 | Qld (Common 1990)
NSW (Common 1990) | yes |
<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Artena dotata Fabricius, 1794 fruitpiercing moth</td>
<td>ADoA 2014 BA 2011a BA 2011b</td>
<td>WA Aust (BA 2011b)</td>
<td>yes</td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Asteropetes noctuina (Butler, 1878)</td>
<td>ADoA 2014 BA 2011b</td>
<td>WA Aust (BA 2011b)</td>
<td>yes</td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Calyptro lata (Butler, 1881)</td>
<td>ADoA 2014 BA 2011a BA 2011b</td>
<td>WA Aust (BA 2011b)</td>
<td>yes</td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Calyptro thalictr (Borkhausen, 1790) fruitpiercing moth</td>
<td>ADoA 2014 BA 2011a BA 2011b</td>
<td>WA Aust (BA 2011b)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Eudocima fullonia (Clerck, 1764) fruitpiercing moth</td>
<td>ASCU 2011</td>
<td>WA (ICDb 2014) Qld (UQIC 2014) NSW (ASCU 2014) NT (NTEIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Ipanica cornigera (Butler, 1886)</td>
<td>ICDb 2014</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Ischyja manlia (Cramer, 1776)</td>
<td>BA 2011a</td>
<td>Qld (UQIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>fruitpiercing moth</td>
<td>BA 2011b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Ophiusa tirhaca (Cramer, 1777)</td>
<td>BA 2011b</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Oraesia emarginata Fabricius, 1794</td>
<td>BA 2011a</td>
<td>Qld (VAIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>fruitpiercing moth</td>
<td>BA 2011b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Dysgonia arctotaenia (Guenée, 1852) recorded as Parallelia arctotaenia Guenée, 1852</td>
<td>ADoA 2014</td>
<td>WA absent</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aust. (Nielsen et al. 1996; PHA 2001 cited in ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Phalaenoides glycinae Lewin, 1805 grapevine moth</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Proteuxoa capularis (Guenée, 1852) also recorded as Caradrina capularis</td>
<td>WINC 2013</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Serrodes campana Guenée, 1852 fruitpiercing moth</td>
<td>BA 2011b</td>
<td>Qld (QDPC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Spodoptera exigua (Hübner, 1808) lesser armyworm</td>
<td>AQIS 1999</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA 2011b</td>
<td>Qld (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Spodoptera litura (Fabricius, 1775) cluster caterpillar</td>
<td>BA 2011b</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TFIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Noctuidae</td>
<td>Spodoptera mauritia (Boisduval, 1833) lawn armyworm</td>
<td>ICDb 2014</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Nolidae</td>
<td>Earias paralella Lucas, 1898</td>
<td>WINC 2014</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Oecophoridae</td>
<td>Maroga melanostigma (Wallengren, 1861) fruit-tree borer</td>
<td>Common 1990</td>
<td>WA (WACALM 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ABRS 2009)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Papilionidae</td>
<td>Papilio (Eleppone) anactus Macleay, 1826 small citrus butterfly</td>
<td>Kerruish 1997a</td>
<td>WA (Lindsay 1992)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Lepidoptera: Psychidae</td>
<td>Clania variegata (Snellen, 1879)</td>
<td>ADoA 2014</td>
<td>WA</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Paulownia bagworm</td>
<td>BA 2011a</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA 2011b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Psychidae</td>
<td>Hyalarcta huebneri (Westwood, 1855)</td>
<td>Hely et al. 1982</td>
<td>WA</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>leaf case moth</td>
<td></td>
<td>(ICDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(UQIC 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic.</td>
<td>(Common 1990)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>(WINC 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas.</td>
<td>(Common 1990)</td>
</tr>
<tr>
<td>Lepidoptera: Pyralidae</td>
<td>Cadra cautella (Walker, 1863)</td>
<td>VAIC 2011</td>
<td>WA</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>tropical warehouse moth</td>
<td></td>
<td>Qld</td>
<td>(QDPC 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(ASCU 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic.</td>
<td>(VAIC 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas.</td>
<td>(TPPD 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>(WINC 2014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT</td>
<td>(NTEIC 2014)</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Pyralidae</td>
<td>Cadra figulilella (Gregson, 1871)</td>
<td>ASCU 2014</td>
<td>WA (Common 1990) Qld (QDPC 2014) NSW (ASCU 2014) Vic. (WINC 2014) SA (WINC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Lepidoptera: Pyralidae</td>
<td>Diaphania indica (Saunders, 1851) cucumber moth</td>
<td>BA 2011a BA 2011b ADoA 2014</td>
<td>WA (ICDb 2014) Qld (QDPC 2014) NSW (ASCU 2014) NT (NTEIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Lepidoptera: Pyralidae</td>
<td>Diaphania indica (Saunders, 1851) also recorded as Palpita indica Saunders, 1851</td>
<td>BA 2011b</td>
<td>WA (ICDb 2014) Qld (QDPC 2014) NSW (ASCU 2014) NT (NTEIC 2014)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
| **Lepidoptera: Pyralidae** | *Plodia interpunctella* (Hübner, 1813)
Indian meal moth
BAMA (s22) Declared Pest | Buchanan et al. 1984 | WA (ICDb 2014)
Qld (QDPC 2014)
NSW (ASCU 2014)
Vic. (VAIC 2014)
Tas. (TPPD 2014)
SA (WINC 2014)
NT (NTEIC 2014) | yes |
| **Lepidoptera: Sphingidae** | *Acosmeryx anceus* Stoll, 1871
sphinx moth | Moulds 1981 | Qld (Common 1990)
NSW (Common 1990) | yes |
| **Lepidoptera: Sphingidae** | *Agrius convolvuli* (Linnaeus, 1758)
convolvulus hawk moth | BA 2011b
ADoA 2014 | WA (ICDb 2014)
Tas. (TPPD 2014)
NT (NTEIC 2014) | no |
| **Lepidoptera: Sphingidae** | *Gnathothlibus erotus* (Cramer, 1777) | Moulds 1981 | WA (ICDb 2014)
Qld (Common 1990)
NSW (Common 1990)
NT (NTEIC 2014) | no |
<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Sphingidae</td>
<td>Hyles livornicoides (Lucas, 1892)</td>
<td>Moulds 1981</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Hyles lineata (Fab.) subsp. livornicoides (Luc.)</td>
<td></td>
<td>Qld (Common 1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>whitelined hawk moth</td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Common 1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Common 1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Common 1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Sphingidae</td>
<td>Theretra clotho (Drury, 1773)</td>
<td>BA 2011b</td>
<td>Qld (ICDb 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>hawk moth</td>
<td>ADoA 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Sphingidae</td>
<td>Theretra latreillii (Maclay, 1826)</td>
<td>Moulds 1981</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>also recorded as Theretra latreillei (Macl.)</td>
<td></td>
<td>Qld (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Common 1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Common 1990)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Sphingidae</td>
<td>Theretra margarita (Kirby 1877)</td>
<td>ICDb 2011</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepidoptera: Sphingidae</td>
<td>Theretra oldenlandiae (Fabricius, 1775)</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>vine hawk moth</td>
<td></td>
<td>QLD (Common 1990)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Hely et al. 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Tortricidae</td>
<td>Epiphyas postvittana Walker, 1863</td>
<td>Fisher & Learmonth 2012</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>light brown apple moth</td>
<td></td>
<td>QLD (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera: Tortricidae</td>
<td>Isotenes miserana (Walker, 1863)</td>
<td>Kerruish 1997a</td>
<td>WA (A Szitó 2009, pers. comm.)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>orange fruit borer</td>
<td></td>
<td>QLD (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Smith et al. 1997)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Smith et al. 1997)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroptera: Chrysopidae</td>
<td>Chrysoperla spp. Steinmann, 1964 green lacewing</td>
<td>DAFF 2013</td>
<td>Qld (ABRS 2009)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthoptera:</td>
<td>Chortoicetes terminifera (Walker, 1870)</td>
<td>Fisher & Learmonth</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Acrididae</td>
<td>Australian plague locust</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Orthoptera:</td>
<td>Phaulacridium vittatum (Sjöstedt, 1920)</td>
<td>Fisher & Learmonth</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Acrididae</td>
<td>wingless grasshopper</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TFIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td>Orthoptera:</td>
<td>Valanga irregularis (Walker)</td>
<td>Hely et al. 1982</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Acrididae</td>
<td>giant grasshopper</td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Orthoptera:</td>
<td>Gryllotalpa africana Beauvois, 1805</td>
<td>BA 2011b</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Acrididae</td>
<td>African mole cricket</td>
<td></td>
<td>Qld (UQIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (WINC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthoptera: Tettigoniidae</td>
<td>Ephippitytha maculata Evans, 1847 (bush katydid)</td>
<td>ASCU 2014</td>
<td>Qld (ASCU 2014) NSW (ASCU 2014)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thysanoptera: Phlaeothripidae</td>
<td>Haplothrips froggatti Hood, 1918 black plague thrips</td>
<td>Brough et al. 1996b</td>
<td>WA (QDPC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Thysanoptera: Phlaeothripidae</td>
<td>Haplothrips victoriensis Bagnall, 1918 tubular black thrips</td>
<td>Furness 2003b</td>
<td>WA (QDPC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Anaphothrips obscurus (Müller, 1776) grass thrips</td>
<td>ADoA 2014</td>
<td>WA (ASCU 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Thysanoptera: Thripidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arorathrips mexicanus (Crawford, 1909)</td>
<td>VAIC 2011</td>
<td>WA (ANIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (ANIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thysanoptera: Thripidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frankliniella occidentalis (Pergande, 1865) western flower thrips</td>
<td>Furness 2003b</td>
<td>WA (ANIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thysanoptera: Thripidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frankliniella schultzei (Trybom, 1910) tomato thrips</td>
<td>ASCU 2014</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
</table>
| **Thysanoptera: Thripidae** | *Heliothrips haemorrhoidalis* (Bouché, 1833)
 greenhouse thrips | Hely et al. 1982 | WA (ASCU 2014)
 Qld (QDPC 2014)
 NSW (ASCU 2014)
 Vic. (VAIC 2014)
 Tas. (TPPD 2014)
 SA (WINC 2014)
 NT (NTEIC 2014) | no |
| **Thysanoptera: Thripidae** | *Hercinothrips femoralis* (Reuter, 1891)
 banded greenhouse thrips | BA 2011b | WA (Galloway 1988)
 Qld (QDPC 2014)
 SA (WINC 2014) | no |
| **Thysanoptera: Thripidae** | *Scirtothrips dorsalis* Hood, 1919
 chilli thrips | NTEIC 2014 | WA (L Halling 2011, pers. comm.)
 Qld (QDPC 2014)
 NSW (ANIC 2014)
 NT (NTEIC 2014) | no |
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Selenothrips rubrocinctus (Giard, 1901) redbanded thrips</td>
<td>QDPC 2014</td>
<td>WA (ANIC 2014) Qld (QDPC 2014) NSW (ASCU 2014) SA (ASCU 2014) NT (NTEIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Thrips coloratus Schmutz, 1913 loquat thrips</td>
<td>ADoA 2014</td>
<td>Qld (QDPC 2014) NT (NTEIC 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Thrips flavus Schrank, 1776 honeysuckle thrips</td>
<td>ADoA 2014</td>
<td>NSW (ASCU 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 7)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Thrips hawaiiensis (Morgan 1913) banana flower thrips</td>
<td>BA 2011b</td>
<td>WA (ANIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADoA 2014</td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Thrips imaginis Bagnall, 1926 plague thrips</td>
<td>ASCU 2014</td>
<td>WA (ANIC 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 Insects associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thysanoptera: Thripidae</td>
<td>Thrips tabaci Lindeman, 1888 onion thrips</td>
<td>QDPC 2014</td>
<td>WA (ICDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (QDPC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ASCU 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (VAIC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (TPPD 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (WINC 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (NTEIC 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acizzia sp.</td>
<td>Unlikely: Hollis (2002) indicates that the superfamily Psylloidea are foliage feeders.</td>
<td>no</td>
</tr>
<tr>
<td>Acosmeryx aneus Stoll, 1871 sphingid moth</td>
<td>Unlikely: Moulds (1981) indicates that larval A. aneus feed on foliage.</td>
<td>no</td>
</tr>
<tr>
<td>Adelium tenebroides Erichson, 1842</td>
<td>Unlikely: Single record from Vitis ex VAIC (2011).</td>
<td>no</td>
</tr>
<tr>
<td>Aethina concolor (Macleay) hibiscus flower beetle</td>
<td>Unlikely: Ewing (2004) indicates that A concolor is normally found in association with flowers.</td>
<td>no</td>
</tr>
<tr>
<td>Agarista agricola Donovan, 1805 painted vine moth</td>
<td>Unlikely: McFarland (1980) indicates that A. agricola feed on foliage.</td>
<td>no</td>
</tr>
<tr>
<td>Agrypnus sp.</td>
<td>Unlikely: Single record from Vitis ex VAIC (2011).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleurocanthus spiniferus (Quaintance, 1903) spiny whitefly</td>
<td>Unlikely: While this species attacks grapevine (Cioffi et al. 2013), it is not considered to be associated with fruit (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Aleurodicus dispersus Russell, 1965 spiraling whitefly</td>
<td>Unlikely: Pawpaw is the only recognised fruit pathway for A. dispersus (Poole et al. 2009).</td>
<td>no</td>
</tr>
<tr>
<td>Altica gravida (Blackburn, 1896) metallic flea beetle</td>
<td>Unlikely: Adults feed on leaves and canes (Hely et al. 1982) larvae are also leaf feeders (Matthews & Reid 2002).</td>
<td>no</td>
</tr>
<tr>
<td>Amblydromella applegum (Schicha, 1983) predatory mite</td>
<td>Unlikely: Recorded from leaf material. Whitney and James (1996) also indicates that A. applegum has an uncommon occurrence in Australian grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>Amblydromella brisbanensis (Schicha, 1979) predatory mite</td>
<td>Unlikely: Recorded from leaf material. Whitney and James (1996) also indicates that A. brisbanensis has an uncommon occurrence in Australian grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association (presence on grape bunch)</td>
<td>Consider further (if yes go to Table 8)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Amblyseius herbicolus (Chant, 1959)</td>
<td>Unlikely: Recorded from leaf material. Whitney and James (1996) also indicates that A. herbicolus has an uncommon occurrence in Australian grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>predatory mite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblyseius sturti group</td>
<td>Unlikely: ASCU (2011) has 3 records from Vitis leaf in 1993.</td>
<td>no</td>
</tr>
<tr>
<td>predatory mite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblyseius waltersi Schicha, 1981</td>
<td>Unlikely: Recorded from leaf material. Whitney and James (1996) also indicates that A. waltersi has an uncommon occurrence in Australian grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>predatory mite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambrosiodmus rubricollis Wood & Bright, 1992</td>
<td>Unlikely: Ambrosia beetles are wood borers and are not associated with fruit (Wood 1982; Coyle et al. 2005 cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>bark beetle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ametastegia (Ametastegia) glabrata (Fallen, 1808) dock sawfly</td>
<td>Unlikely: Primary host plant includes Rumex, Polygonum, Rheum. Reported from grapevine canes in Vicotira (Malipatil et al. 1995).</td>
<td>no</td>
</tr>
<tr>
<td>Anagyrus fusciventris (Girault, 1915) parasitic wasp</td>
<td>Likely: Furness and Charles (2003) indicates that A. fusciventris parasitises long-tailed and citrophilus mealybug which can be found in sheltered positions such as grape bunches.</td>
<td>yes</td>
</tr>
<tr>
<td>Anoplognathus velutinus Boisduval, 1835 christmas beetle</td>
<td>Unlikely: Carne (1957) indicates that larvae are inhabit soil while the adults feed on foliage, although Hely et al. (1982) does reports that Anoplognathus spp. can sometimes damage plum fruit.</td>
<td>no</td>
</tr>
<tr>
<td>Aploneura ampelina (Mokrzecky 1896)</td>
<td>Unlikely: Blackman and Eastop (2000) indicates that A. ampelina is found underground feeding on roots or in leaf galls.</td>
<td>no</td>
</tr>
<tr>
<td>Apogonia sp.</td>
<td>Unlikely: Brown et al. (2000) indicated that NT Apogonia are leaf feeders.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcte coerula (Guenée, 1852)</td>
<td>Unlikely: Adults attack the fruit of grapevine (JSAE 1987; Zhang 1994 cited in BA 2011b), but feed only at night and are not associated with grapevine during the day (Hattori 1969; MAFF 2008a cited in BA 2011b).</td>
<td>no</td>
</tr>
<tr>
<td>Argyropleidia subaspersa (Walker)</td>
<td>Not assessed</td>
<td>yes</td>
</tr>
<tr>
<td>Arsipoda chrysis (Olivier, 1808)</td>
<td>Unlikely: ABRS (2011) indicates that members of the Chrysomelid subfamily Galerucinae feed on leaves. Matthews and Reid (2002) indicates that Arsipoda larvae are unknown but are likely to be stem or root boring.</td>
<td>no</td>
</tr>
<tr>
<td>Artena dotata Fabricius, 1794</td>
<td>Unlikely: Adults feed on ripe grapes at night by piercing them and sucking their juices. They are not associated with grapes during daylight hours (Li 2004 cited in BA 2011a).</td>
<td>no</td>
</tr>
<tr>
<td>Asteropetes noctuina (Butler, 1878)</td>
<td>Unlikely: Larvae of this species feed only on leaves (USDA-APHIS 2002 cited in ADoA 2014)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attagenus (Attagenus) unicolor (Brahm, 1791) black carpet beetle</td>
<td>Unlikely: Thompson (1983) indicates that A. attagenus is a pest of stored product and carpets.</td>
<td>no</td>
</tr>
<tr>
<td>Australopsylla sp.</td>
<td>Unlikely: VAIC (2011) has single record from Vitis leaf in 1993.</td>
<td>no</td>
</tr>
<tr>
<td>Axionicus insignis Pascoe, 1869 kurrajong weevil</td>
<td>Unlikely: Both Milthorpe and Cunningham (2005) and Alipne Nurseries (2011) indicate that Kurrajong weevil (larvae) will only attack unhealthy trees.</td>
<td>no</td>
</tr>
<tr>
<td>Bactrocera (Bactrocera) neohumeralis (Hardy, 1951) lesser Queensland fruit fly</td>
<td>Unlikely: Single record of B. neohumeralis ex Vitis labrusca from (May 1960).</td>
<td>no</td>
</tr>
<tr>
<td>Bactrocera (Bactrocera) tryoni (Froggatt, 1897) Queensland fruit fly</td>
<td>Likely: Oag (2001) reports Qfly as a major pest of table grapes. Loch (2008) reports high levels damage to wine grapes.</td>
<td>yes</td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association (presence on grape bunch)</td>
<td>Consider further (if yes go to Table 8)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Blastopsylla sp.</td>
<td>Unlikely: Hollis (2002) indicates that the Superfamily Psylloidea are foliage feeders.</td>
<td>no</td>
</tr>
<tr>
<td>Caedicia spp.</td>
<td>Unlikely: Furness (2003b) indicates that Nymphs feed in isolated patches from the upper leaf surface giving the leaves a lace-like appearance when severe. Older katydids chew large irregular holes.</td>
<td>no</td>
</tr>
<tr>
<td>Calyptera lata (Butler, 1881)</td>
<td>Unlikely: Adults attack grape berries (JSAE 1987; MAFF 2008a cited in ADoA 2014) but feed at night and are not associated with grapevine during the day (Hattori 1969 cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Calyptera thalictri (Borkhausen, 1790) fruitpiercing moth</td>
<td>Unlikely: Adults attack grape berries (JSAE 1987; NPQS 2007a cited in ADoA 2014) but feed at night and are not associated with grapevine during the day (Hattori 1969 cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Chlorophorus annulare (Fabricius, 1787) bamboo longicorn beetle</td>
<td>Unlikely: ‘The larvae of this species attack roots while adults feed on flowers. No records have been found which associate this species with fruit’ (ADoA 2014).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysomphalus dictyospermi (Morgan, 1889) Spanish red scale</td>
<td>Likely: Affected plant parts are leaves especially, but sometimes on fruit and occasionally on branches (Watson 2005).</td>
<td>yes</td>
</tr>
<tr>
<td>Chrysopa spp. green lacewing</td>
<td>Likely: Furness and Charles (2003) indicates that Chrysopa spp. parasitises long-tailed and citrophilus mealybug which can be found in sheltered positions such as grape bunches.</td>
<td>yes</td>
</tr>
<tr>
<td>Chrysoperla spp. Steinmann, 1964 green lacewing</td>
<td>Likely: Recorded as a contaminant of table grapes in DAFF (2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Colaspoides foveiventris Lea, 1915 lucerne leafeating beetle</td>
<td>Unlikely: QDPIF (2011) has single record from Vitis in 1931.</td>
<td>no</td>
</tr>
<tr>
<td>Colaspoides picticornis Lea, 1915</td>
<td>Unlikely: QDPIF (2011) has single records from Vitis in 1931 and 1932.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colgar percutum (Walker, 1858) citrus planthopper</td>
<td>Likely: Smith et al. (1997) indicates that grapes are a host for C. percutum and that damage includes feeding marks.</td>
<td>yes</td>
</tr>
<tr>
<td>Conoderus sp.</td>
<td>Unlikely: VAIC (2011) has single record from Vitis fruit and stem in 1995.</td>
<td>no</td>
</tr>
<tr>
<td>Corticaria japonica (Reitter) minute mould beetle</td>
<td>Unlikely: BA (2006) indicates that the beetles are orchard or packing house contaminants and are feeders on decaying plant material.</td>
<td>no</td>
</tr>
<tr>
<td>Cryptolestes pusillus (Schönherr 1878) flat grain beetle</td>
<td>Likely: Recorded as a contaminant of table grapes in DAFF (2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Daktulosphaira vitifoliae (Fitch, 1855) grape phylloxera</td>
<td>Likely: Buchanan et al. (2003) indicates that Phylloxera crawlers can be present on leaves and fruit of infested grapevines.</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaspidiotus ancyclus (Putnam, 1878)</td>
<td>Unlikely: This species is not associated with grape bunches (Ben-Dov 2012b cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Putnam scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaspis boisduvalii Signoret, 1869</td>
<td>Unlikely: Although a recognised as an important pest of orchid plants (Espinosa et al. 2010), very little information could be found regarding orchid scale’s association with Vitis sp. and no information could be found regarding any association with table grape bunches.</td>
<td>no</td>
</tr>
<tr>
<td>orchid scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieuches maculicollis (Walker, 1872)</td>
<td>Unlikely: Reported as a ground dwelling species and associated with Vitis roots (ABRS 2009).</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didymocantha obliqua Newman, 1840</td>
<td>Unlikely: Lawrence and Britton (1991) indicates that adults feed on flowers, foliage or bark while larvae usually feed internally on bark, phloem, sapwood or hardwood.</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphucephala colaspidoides (Gyllenhal, 1817)</td>
<td>Unlikely: Hely et al. (1982) indicates that swarming beetle feed on foliage.</td>
<td>no</td>
</tr>
<tr>
<td>green scarab beetle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association (presence on grape bunch)</td>
<td>Consider further (if yes go to Table 8)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Diphucephala nigritarsis Lea 1917 green scarab beetle</td>
<td>Unlikely: Hely et al. (1982) indicates that swarming beetle feed on foliage.</td>
<td>no</td>
</tr>
<tr>
<td>Diphucephala nitidicollis Macleay, 1886 green scarab beetle</td>
<td>Unlikely: Hely et al. (1982) indicates that swarming beetle feed on foliage.</td>
<td>no</td>
</tr>
<tr>
<td>Diphucephala pulchella Waterhouse, 1837 green scarab beetle</td>
<td>Unlikely: Hely et al. (1982) indicates that swarming beetle feed on foliage.</td>
<td>no</td>
</tr>
<tr>
<td>Dolichogenidea tasmanica (Cameron, 1912) parasitic wasp</td>
<td>Likely: Baker et al. (2003) indicates that D. tasmanica parasitises light brown apple moth which can be found on foliage and bunches.</td>
<td>yes</td>
</tr>
<tr>
<td>Dryocoetiops coffeae (Eggers, 1923) bark beetle</td>
<td>Unlikely: Scolytine beetles are associated with woody plant products (Luo et al. 2005 cited inBA 2011a). They are unlikely to be on the pathway (BA 2011a).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplaspidiotus claviger (Cockerell, 1901) dupla scale</td>
<td>Unlikely: Brimblecombe (1962a) indicates that D. claviger is found on the woody portions of grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>Echiomima sp. vine borer moth</td>
<td>Unlikely: Goodwin et al. (2003) indicates that Echiomina sp. larvae tunnel into canes and spurs while nocturnally feeding on bark.</td>
<td>no</td>
</tr>
<tr>
<td>Echnolagria sp.</td>
<td>Unlikely: TPPD (2011) has single record from Vitis in 2002.</td>
<td>no</td>
</tr>
<tr>
<td>Ecrizothis inaequalis Blackburn, 1899 gooseberry weevil</td>
<td>Unlikely: Kerruish (1997a) indicates that E. inaequalis feeds on foliage and buds.</td>
<td>no</td>
</tr>
<tr>
<td>Ephippitytha maculata Evans, 1847 bush katydid</td>
<td>Likely: Rentz (1996) indicates that bush katydids can feed on leaves, flowers, and fruit.</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eristalinus (Lathyrophthalmus) aeneus (Scopoli, 1763) hover fly</td>
<td>Likely: Recorded as a contaminant of table grapes in DAFF (2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Erythroneura spp. Fitch, 1851 leafhopper</td>
<td>Unlikely: The genus does not validly occur in the Australian region (ABRS 2009).</td>
<td>no</td>
</tr>
<tr>
<td>Euproctis paradoxa (Butler, 1886) tussock moth</td>
<td>Likely: Hely et al. (1982) indicates that indicate that the larvae can graze fruit near stem.</td>
<td>yes</td>
</tr>
<tr>
<td>Geococcus coffeae Green, 1933 coffee root mealybug</td>
<td>Unlikely: Ben-Dov et al. (2010) indicates that G. coffeae occurs on the roots of its host plants.</td>
<td>no</td>
</tr>
<tr>
<td>Geoica lucifuga (Zehntner, 1897) sugarcane root aphid</td>
<td>Unlikely: Blackman and Eastop (2000) indicates that G. lucifuga occurs on the roots of its host plants.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graptostethus sp. crusader bug</td>
<td>Likely: Chin et al. (2009) indicates that Graptostethus sp. can cause mechanical damage to fruit.</td>
<td>yes</td>
</tr>
<tr>
<td>Hypothenemus eruditus shot-hole wood borer</td>
<td>Unlikely: No records have been found which associate this species with fruit (ADoA 2014). Scolytine beetles are associated with woody plant products (Luo et al. 2005 cited in BA 2011a). They are unlikely to be on the pathway (BA 2011a).</td>
<td>no</td>
</tr>
<tr>
<td>Hypurus bertrandii (Perris 1852) portulaca leafmining weevil</td>
<td>Unlikely: DAFF (2013) reports no evidence of an association with Vitis vinifera.</td>
<td>no</td>
</tr>
<tr>
<td>Ischyja manlia (Cramer, 1776) fruitpiercing moth</td>
<td>Unlikely: This species feeds on grapevine at night (Walker 2007a cited in BA 2011b) and shelters in leaves during the day (Li 2004 cited in BA 2011b). This species would not be associated with grapevine during the day (Hattori 1969 cited in BA 2011b).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptopius robustus (Boheman)</td>
<td>Unlikely: Anon (1939) indicates that L. robustus usually infests weakened trees with adults feeding on leaves while larvae are soil dwelling feeding on roots.</td>
<td>no</td>
</tr>
<tr>
<td>fruit tree root weevil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptopius squalidus Boheman</td>
<td>Unlikely: Hely et al. (1982) indicates that indicate that the larvae feed on roots while the adults can feed on leaves.</td>
<td>no</td>
</tr>
<tr>
<td>fruit tree root weevil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopholeucaspis japonica (Cockerell, 1897)</td>
<td>Likely: Although L. japonica is associated with the leaves and bark of the host and sometimes on fruits (CABI/EPPO 1997), the Australian distribution appears to be based on early 1900’s records. No recent records for the presence of L. japonica in Australia could be found.</td>
<td>no</td>
</tr>
<tr>
<td>Japanese baton scale; pear white scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandalotus sp.</td>
<td>Unlikely: Rarely collected from Vitis, CESAR Consultants (2007) indicate that adults are leaf feeders while larvae are soil dwellers feeding on root material.</td>
<td>no</td>
</tr>
<tr>
<td>mandalotus weevil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melampsalta sp. black cicada</td>
<td>Unlikely: Greenup (1967) reports oviposition damage to wood.</td>
<td>no</td>
</tr>
<tr>
<td>Metaphycus lounsberryi (Howard, 1898) parasitic wasp</td>
<td>Unlikely: Furness (2003) indicates that M. lounsberryi parasitised grapevine scale Parthenolecanium persicae persicae, which can be found on canes and the bark of older wood in spring. Small yellow crawler scales are present on leaves in summer.</td>
<td>no</td>
</tr>
<tr>
<td>Misumena spp. crab spider</td>
<td>Likely: Recorded as a contaminant of table grapes in DAFF (2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Monolepta divisa Blackburn, 1888 small monolepta beetle</td>
<td>Unlikely: Hely et al. (1982) indicates that swarming beetles feed on young foliage and green fruit.</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association (presence on grape bunch)</td>
<td>Consider further (if yes go to Table 8)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Neoseiulus loxtoni (Schicha, 1979)</td>
<td>Unlikely: James and Whitney (1991) indicates that N. loxtoni can be found on dormant vines and leaves of actively growing vines.</td>
<td>no</td>
</tr>
<tr>
<td>Neoseiulus nosae (McMurtry & Schicha, 1987)</td>
<td>Unlikely: Recorded from leaf material. Whitney and James (1996) also indicates that N. nosae has an uncommon occurrence in Australian grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>Neoseiulus thwaitei (Schicha, 1977)</td>
<td>Unlikely: Whitney and James (1996) indicates that N. thwaitei has an uncommon occurrence in Australian grapevines.</td>
<td>no</td>
</tr>
<tr>
<td>Notiosomus sp.</td>
<td>Unlikely: ICDb (2011) has single record from Vitis in 1959.</td>
<td>no</td>
</tr>
<tr>
<td>Oligonychus punicae (Hirst, 1926)</td>
<td>Unlikely: Oligonychus punicae feeds on leaves (Vasquez et al. 2008 cited in BA 2011a).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oraesia emarginata (Fabricius, 1794) fruitpiercing moth</td>
<td>Unlikely: This species is a nocturnal fruit-piercing moth. As with other fruit-piercing noctuid moths, adults shelter in foliage during the day (Li 2004 cited in BA 2011a).</td>
<td>no</td>
</tr>
<tr>
<td>Orthorhinus klugi Boheman vine weevil</td>
<td>Unlikely: Hely et al. (1982) indicates that only wood is attacked.</td>
<td>no</td>
</tr>
<tr>
<td>Oryzaephilus surinamensis (Linnaeus, 1758) saw toothed grain beetle</td>
<td>Unlikely: Saw toothed grain beetle can be a pest of dried sultana production (Buchanan et al. 1984).</td>
<td>no</td>
</tr>
<tr>
<td>BAMA (s22) Declared Pest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otiorhynchus (Zustalestus) rugosostriatus (Goeze 1777) rough strawberry weevil</td>
<td>Unlikely: Larvae feed on roots and adults feed on leaves throughout the summer and are nocturnal. Overwintering occurs as fully-grown larvae, pupae or adults, in the topsoil or soil debris (BA 2005).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otiorhynchus sulcatus (Fabricius, 1775)</td>
<td>Unlikely: Adults nocturnally feed on buds, foliage, flowers, and the cluster rachis. Larvae feed on roots (Kerruish 1997b; Bentley et al. 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Black vine weevil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozolius pitta Löcker, 2006</td>
<td>Not assessed</td>
<td>yes</td>
</tr>
<tr>
<td>Panonychus citri (McGregor, 1916)</td>
<td>Unlikely: Although this species attacks grapevine (Wu and Lo 1989; Migeon and Dorkeld 2012 cited in ADoA 2014), feeding occurs on leaves (Jeppson et al. 1975 cited in ADoA 2014). No records have been found which associate this species with fruit (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Citrus red mite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallelia arctotaenia Guenée, 1852</td>
<td>Unlikely: Adults of this species attack grape berries (JSAE 1987 cited in ADoA 2014). However, they feed only at night and are not associated with grapevine during the day (Hattori 1969 cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Parlatoria camelliae Comstock, 1883</td>
<td>Unlikely: Infestations were reported to be limited to the leaves of host plants (Miller & Davidson 2005).</td>
<td>no</td>
</tr>
<tr>
<td>Camellia parlatoria scale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parthenolecanium corni corni (Bouché, 1844)</td>
<td>Likely: P. corni corni is a pest of Vitis vinifera (Ben-Dov 2014b) and can be found on grape bunches (Flaherty et al. 1992 cited in DAFF 2013).</td>
<td>yes</td>
</tr>
<tr>
<td>European fruit lecanium scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perperus innocuos</td>
<td>Unlikely: Sainty (1991) and Hely et al. (1982) indicates that adults feed on buds and foliage while larvae live in the soil.</td>
<td>no</td>
</tr>
<tr>
<td>Perperus lateralis Lea, 1908 white striped weevil</td>
<td>Unlikely: Sainty (1991) and Hely et al. (1982) indicates that adults feed on buds and foliage while larvae live in the soil.</td>
<td>no</td>
</tr>
<tr>
<td>Perperus sp. bud weevil</td>
<td>Unlikely: Sainty (1991) and Hely et al. (1982) indicates that adults feed on buds and foliage while larvae live in the soil.</td>
<td>no</td>
</tr>
<tr>
<td>Phenacoccus aceris (Signoret, 1875) apple mealybug</td>
<td>Unlikely: Occurs on leaves and stems of a variety of plants (Ben-Dov 1994 cited in BA 2011b) including grapevine (Sforza et al. 2003 cited in BA 2011b). No records found of this pest on fruit (BA 2011b).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllotocus sp.</td>
<td>Unlikely: Lawrence and Britton (1991) indicates that adults are short lived and swarm to flowering trees while the larvae inhabit the soil feeding on roots and other organic matter.</td>
<td>no</td>
</tr>
<tr>
<td>Phytoseius hongkongensis Swirski & Shechter, 1961 predatory mite</td>
<td>Not assessed</td>
<td>yes</td>
</tr>
<tr>
<td>Phytoseius woolwichensis Schicha, 1977 predatory mite</td>
<td>Not assessed</td>
<td>yes</td>
</tr>
<tr>
<td>Plodia interpunctella (Hübner, 1813) Indian meal moth</td>
<td>Unlikely: Buchanan et al. (1984) indicates that P. interpunctella is a pest of dried fruit.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polistes chinensis antennalis Perkins, 1905</td>
<td>Unlikely: P. chinensis antennalis prey on invertebrates and collect nectar and honeydew from flowers (Clapperton 1999).</td>
<td>no</td>
</tr>
<tr>
<td>Asian paper wasp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proprioseiopsis peltatus (Van der Merwe, 1968)</td>
<td>Not assessed</td>
<td>yes</td>
</tr>
<tr>
<td>predatory mite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis pentagona (Targioni Tozzetti, 1886)</td>
<td>Likely: Miller and Davidson (1990 cited in ADoA 2014) reported that P. pentagona can be found on the leaves and sometimes on fruit of its hosts.</td>
<td>yes</td>
</tr>
<tr>
<td>peach white scale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudococcus calceolariae (Maskell, 1897)</td>
<td>Likely: Furness and Charles (2003) indicate that P. calceolariae can be found in sheltered positions such as grape bunches.</td>
<td>yes</td>
</tr>
<tr>
<td>citrophilus mealybug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychoda alternata Say, 1824</td>
<td>Likely: Recorded as a contaminant of table grapes in DAFF (2013).</td>
<td>yes</td>
</tr>
<tr>
<td>moth fly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizobius ruficollis Lea, 1890</td>
<td>Likely: Furness and Charles (2003) indicate that R. ruficollis parasitises long-tailed and citrophilus mealybug which can be found in sheltered positions such as grape bunches.</td>
<td>yes</td>
</tr>
<tr>
<td>Rhizoecus falcifer Kunckel d'Herculais, 1878</td>
<td>Unlikely: R. falcifer is a ground-inhabiting mealybug (McKenzie 1967).</td>
<td>no</td>
</tr>
<tr>
<td>Rhyparida dimidiata Baly, 1861</td>
<td>Likely: Matthews and Reid (2002) indicates that larvae are soil dwelling and adults can be foliage or nectar feeders.</td>
<td>no</td>
</tr>
<tr>
<td>Scelodonta brevipilis Lea, 1915</td>
<td>Likely: ABRS (2011) indicates that members of the Chrysomelid subfamily Eumolpinae feed on leaves, flowers and/or fruit of a wide variety of angiosperms as adults.</td>
<td>yes</td>
</tr>
<tr>
<td>Scutiphora pedicellata (Kirby, 1826)</td>
<td>Likely: Hely et al. (1982) indicates that S. pedicellata feeds on vegetative growth and fruit.</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serrodes campana Guenée, 1852 fruitpiercing moth</td>
<td>Unlikely: Adults attack fruit of grapevine (JSAE 1987 cited in ADoA 2014), but feed only at night and are not associated with grapevine during the day (Hattori 1969; NPQS 2007a cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Simplicia caeneusalis (Walker, 1859)</td>
<td>Unlikely: Common (1990) indicates that larvae of Simplicia feed on dead leaves.</td>
<td>no</td>
</tr>
<tr>
<td>Sinoxylon sp. auger beetle</td>
<td>Unlikely: Lawrence and Britton (1991) indicates that Bostrichid beetles are wood boring insects.</td>
<td>no</td>
</tr>
<tr>
<td>Sinoxylon anale Lesne, 1897 auger beetle</td>
<td>Unlikely: Lawrence and Britton (1991) indicates that Bostrichid beetles are wood boring insects.</td>
<td>no</td>
</tr>
<tr>
<td>Sphaerococcopsis inflatipes (Maskell, 1893)</td>
<td>Unlikely: ABRS (2009) and Beardsley (1974) indicate that S. inflatipes resided in bark galls.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spilostethus decoratus (Stål, 1866)</td>
<td>milkweed bug</td>
<td>yes</td>
</tr>
<tr>
<td>Testrica antica Walker, 1867</td>
<td>Not assessed</td>
<td>yes</td>
</tr>
<tr>
<td>Tetracnemoidea brevicornis (Girault, 1915)</td>
<td>parasitic wasp</td>
<td>Likely: Furness and Charles (2003) indicates that T. brevicornis parasitises long-tailed and citrophilus mealybug which can be found in sheltered positions such as grape bunches. yes</td>
</tr>
<tr>
<td>Tetranychus kanzawai Kishida, 1927</td>
<td>Kanzawa spider mite</td>
<td>Likely: T. kanzawai mites and webbing are often found on the under surfaces of the leaves, but can occasionally attack and breed on grape berries (Ho and Chen 1994; Ashihara 1996BA 2011b). yes</td>
</tr>
<tr>
<td>Theretra clotho (Drury, 1773)</td>
<td>hawk moth</td>
<td>Unlikely: This species feeds on grapevine (CABI 2012 cited in ADoA 2014). However, Sphingids oviposit on leaves while larvae feed on leaves or occasionally stems and pupate in the soil (Australian Museum 2009 cited in ADoA 2014). no</td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrips coloratus Schmutz, 1913</td>
<td>Unlikely: This species is associated with flowers (Mound & Masumoto 2005) and not fruit (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>loquat thrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips flavus Schrank, 1776</td>
<td>Unlikely: No records have been found which associate this species with fruit (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>honeysuckle thrips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trionymus sp.</td>
<td>Unlikely: TPPD (2011) has single record from Vitis in 1979.</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogoderma variabile Ballion 1878</td>
<td>Likely: Recorded as a contaminant of table grapes in DAFF (2013).</td>
<td>yes</td>
</tr>
<tr>
<td>warehouse beetle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAMA (s22) declared pest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vespula germanica (Fabricus, 1793)</td>
<td>Likely: Ward (2001) indicates that some wineries have to bring harvests forward to reduce losses when wasp numbers are high.</td>
<td>yes</td>
</tr>
<tr>
<td>European wasp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7 Invertebrates associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association (presence on grape bunch)</th>
<th>Consider further (if yes go to Table 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xanthogaleruca luteola (Müller, 1766)</td>
<td>Unlikely: X. luteola feeds only on elm trees although it may overwinter in crevices near elm trees, houses, sheds and other protected places (DAFF 2013).</td>
<td>no</td>
</tr>
<tr>
<td>elm leaf beetle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylobosca decisa Lesne, 1906</td>
<td>Unlikely: Lawrence and Britton (1991) indicates that Bostrichid beetles are wood boring insects.</td>
<td>no</td>
</tr>
<tr>
<td>Xylopsocus capucusinus (Fabricius, 1781)</td>
<td>Unlikely: Larvae feed on roots and adults bore into stems (Woodruff et al. 2014).</td>
<td>no</td>
</tr>
<tr>
<td>false powderpost beetle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylothrips flavipes (Illiger, 1801)</td>
<td>Unlikely: Bostrichidae adults and larvae feed on the woody tissues of their host plants (Liu et al. 2008).</td>
<td>no</td>
</tr>
<tr>
<td>auger beetle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygina sp.</td>
<td>Unlikely: VAIC (2011) has single record from Vitis vinifera in 1995.</td>
<td>no</td>
</tr>
<tr>
<td>[Hemiptera: Cicadellidae]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Anagyrus fusciventris (Girault, 1915) parasitic wasp</td>
<td>Likely: Furness and Charles (2003) indicates that A. fusciventris parasitises long-tailed mealybug which can be found in sheltered positions such as grape bunches.</td>
<td>Unlikely: Furness and Charles (2003) established A. fusciventris as a biocontrol agent.</td>
</tr>
<tr>
<td>Argyrolepidia subaspersa (Walker)</td>
<td>Not assessed</td>
<td>Unlikely: The paucity of available literature on A. subaspersa indicates a non-pestiferous nature.</td>
</tr>
<tr>
<td>Bactrocera (Bactrocera) tryoni (Froggatt, 1897) Queensland fruit fly</td>
<td>Likely: Host plants listed in Hancock et al. (2000) are present in WA.</td>
<td>Likely: White and Hancock (1997) indicates that B. tryoni is the most serious insect pest of fruit and vegetable crops in Australia.</td>
</tr>
<tr>
<td>Chrysomphalus dictyospermi (Morgan, 1889) Spanish red scale</td>
<td>Likely: Host plants listed in Miller and Davidson (2005) are present in WA.</td>
<td>Likely: Is of economic importance to several hosts and a serious pest of citrus (Miller & Davidson 2005).</td>
</tr>
</tbody>
</table>
Table 8 Potential for establishment and economic consequences (invertebrates)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysopa spp. green lacewing</td>
<td>Likely: ICDb (2011) lists several Chrysopa spp. present in WA.</td>
<td>Unlikely: Furness and Charles (2003) indicates that Chrysopa spp. are biocontrol agents.</td>
<td>no</td>
</tr>
<tr>
<td>Chrysoperla spp. green lacewing</td>
<td>Not assessed</td>
<td>Unlikely: Many species of the genus Chrysoperla are important biological control agents (New 2002; Pappas et al. 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Colgar peracutum (Walker, 1858) citrus planthopper</td>
<td>Likely: Smith et al. (1997) indicates that C. peracutum feed on citrus, grape, potato and other plants that are grown in WA.</td>
<td>Likely: Smith et al. (1997) indicates that C. peracutum can damage fruit.</td>
<td>yes</td>
</tr>
<tr>
<td>Cryptolestes pusillus (Schönherr 1878) flat grain beetle BAMA (s22) declared pest</td>
<td>Likely: C. pusillus is a cosmopolitan species that has been transported internationally in exported commodities. C. pusillus is present in Australia (Tay et al. 2014).</td>
<td>Likely: Cryptolestes are important pests of cereals, cereal products, oilseeds and dried processed foods of vegetable origin (Rees 2004).</td>
<td>yes</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
<td>Quarantine pest status</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Daktulosphaira vitifoliae (Fitch, 1855)</td>
<td>Likely: Vitis vinifera, the sole host for D. vitifoliae (Buchanan et al. 2003). Both table and wine grapes are grown extensively in WA (DAFWA 2006; DAFWA 2014a).</td>
<td>Likely: Buchanan et al. (2003) indicate that D. vitifoliae is the world’s worst grape pest.</td>
<td>yes</td>
</tr>
<tr>
<td>grape phylloxera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolichogenidea tasmanica (Cameron, 1912)</td>
<td>Likely: Bailey et al. (2003) lists D. tasmanica as a biocontrol agent for Light brown apple moth, a pest present in WA.</td>
<td>Unlikely: Bailey et al. (2003) indicates that D. tasmanica as a biocontrol agent.</td>
<td>no</td>
</tr>
<tr>
<td>parasitic wasp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephippitytha maculata Evans, 1847</td>
<td>Not assessed</td>
<td>Unlikely: The absence of available literature on the E. maculata indicates a non-pestiferous nature.</td>
<td>no</td>
</tr>
<tr>
<td>bush katydid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eristalinus (Lathyrophthalmus) aeneus (Scopoli, 1763)</td>
<td>Not assessed</td>
<td>Unlikely: Syrphidae adults are pollen and nectar feeders and can be pollinators of major significance. Most Eristalinae are saprophagous (Evenhuis 1989).</td>
<td>no</td>
</tr>
<tr>
<td>hover fly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8 Potential for establishment and economic consequences (invertebrates)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euproctis paradoxa (Butler, 1886) native tussock moth</td>
<td>Likely: Poole et al. (2011) lists E. paradoxa hostplants as Avocado, grape, nectarine, peach and radiata pine which are grown extensively in WA (DAFWA 2006; DAFWA 2014a).</td>
<td>Likely: Hely et al. (1982) indicates that E. paradoxa can feed on the stalks of ripening grapes and cause heavy fruit fall.</td>
<td>yes</td>
</tr>
<tr>
<td>Graptostethus sp. crusader bug</td>
<td>Likely: JD Swan (2011, pers. comm.) lists Graptostethus sp. as a pest of Vitis which is grown extensively in WA (DAFWA 2006; DAFWA 2014a).</td>
<td>Likely: Chin et al. (2009) indicates that when these bugs swarm, they generally do not feed but may cause physical damage by breaking off stems or cause scratch marks on leaves, flowers or fruit by moving on the plants in such large numbers.</td>
<td>yes</td>
</tr>
<tr>
<td>Misumena spp. crab spider</td>
<td>Not assessed</td>
<td>Unlikely: Spiders in this genus are predators not plant pests (DAFF 2013).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 8 Potential for establishment and economic consequences (invertebrates)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozoliarus pitta Löcker, 2006</td>
<td>Likely: Both table and wine grapes are grown extensively in WA (DAFWA 2006; DAFWA 2014a).</td>
<td>Unlikely: The absence of available literature on O. pitta indicates a non-pestiferous nature.</td>
<td>no</td>
</tr>
<tr>
<td>Parthenolecanium corni corni (Bouché, 1844) European fruit lecanium scale</td>
<td>Likely: P. corni is highly polyphagous with host plants in at least 40 families (Ben-Dov 2014b) many of which are present in Western Australia.</td>
<td>Likely: ‘Infestations of P. corni result in reduced vigour and general debility of the host plant. Heavy infestations may result in chlorotic spotting and premature shedding of leaves, wilting and dieback of stems. Honeydew deposited on the leaves and fruit serves as a medium for the growth of black sooty moulds. The sooty mould results in a reduction of photosynthetic area and lowers the market value of ornamental plants and plant produce’ (CABI 2014). Capable of transmission of Grapevine leafroll-associated viruses (Sforza et al. 2003).</td>
<td>yes</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
<td>Quarantine pest status</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Philonthus spp. Stephens, 1829 rove beetle</td>
<td>Likely: Philonthus spp. have been introduced to Australia by exported commodities and established (Moore 1968).</td>
<td>Unlikely: Most Staphylinidae live in decomposing plant and/or animal matter. Most adults are predators, some are parasitoids of other insects (Hangay & Zborowski 2010).</td>
<td>no</td>
</tr>
<tr>
<td>Phytoseius hongkongensis Swirski & Shechter, 1961 predatory mite</td>
<td>Likely: P. hongkongensis has been recorded from Vitis vinifera, (ASCU 2011) which is grown extensively in WA (DAFWA 2006; DAFWA 2014a).</td>
<td>Unlikely: (Jeppson et al. 1975) indicates that mites of the Phytoseiidae are an effective and widespread biocontrol agent.</td>
<td>no</td>
</tr>
<tr>
<td>Phytoseius woolwichensis Schicha, 1977 predatory mite</td>
<td>Likely: P. woolwichensis has been recorded from Vitis vinifera and other plant species (ASCU 2011), that are grown extensively in WA.</td>
<td>Unlikely: Jeppson et al. (1975) indicates that mites of the Phytoseiidae are an effective and widespread biocontrol agent.</td>
<td>no</td>
</tr>
<tr>
<td>Proprioseiopsis peltatus (Van der Merwe, 1968) predatory mite</td>
<td>Likely: P. peltatus has been recorded from Vitis vinifera and other plant species (ASCU 2011), that are grown extensively in WA.</td>
<td>Unlikely: Jeppson et al. (1975) indicates that mites of the Phytoseiidae are an effective and widespread biocontrol agent.</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
<td>Quarantine pest status</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Pseudaulacaspis pentagona (Targioni Tozzetti, 1886) peach white scale</td>
<td>Likely: P. pentagona is highly polyphagous (Ben-Dov 2014c) with many host plants present in Western Australia.</td>
<td>Likely: P. pentagona is a highly destructive pest of fruit trees and woody ornamentals throughout the world (Hanks & Denno 1993; Ben-Dov 2014c).</td>
<td>yes</td>
</tr>
<tr>
<td>Pseudococcus calceolariæ (Maskell, 1897) citrophilus mealybug</td>
<td>Likely: Ben-Dov et al. (2010) lists an extensive host range for P. calceolariæ, many of which are grown in WA.</td>
<td>Likely: Furness and Charles (2003) indicates that a heavy infestation of P. calceolariæ can render a crop unsaleable.</td>
<td>yes</td>
</tr>
<tr>
<td>Psychoda alternata Say, 1824 moth fly</td>
<td>Not assessed</td>
<td>Unlikely: Larvae live in moist areas around sewage plants and drain pipes (Barnes 2009 cited in DAFF 2013).</td>
<td>no</td>
</tr>
<tr>
<td>Rhizobius ruficollis Lea ladybird</td>
<td>Likely: Furness and Charles (2003) indicates that R. ruficollis parasitises long-tailed a pest with an extensive host range and is present in WA</td>
<td>Unlikely: Furness and Charles (2003) indicates that R. ruficollis is a biological control agent</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
<td>Quarantine pest status</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Scelodonta brevipilis Lea, 1915</td>
<td>Likely: QDPIF (2011) indicates that S. brevipilis has been recorded from Vitis vinifera.</td>
<td>Unlikely: The paucity of available literature on E. maculata indicates a non-pestiferous nature.</td>
<td>no</td>
</tr>
<tr>
<td>Scutiphora pedicellata (Kirby, 1826) metallic shield bug</td>
<td>Likely: Fletcher (2007) indicates that S. pedicellata been recorded as affecting native figs, fruit trees such as apricot, cherry, peach and pear, and grapes which are grown in WA.</td>
<td>Likely: Fletcher (2007) indicates that S. pedicellata been recorded as affecting native figs, fruit trees such as apricot, cherry, peach and pear, and grapes which are grown in WA.</td>
<td>yes</td>
</tr>
<tr>
<td>Spilostethus decoratus (Stål, 1866) milkweed bug</td>
<td>Not assessed</td>
<td>Unlikely: The absence of available literature including that available in Slater (1985) regarding S. decoratus indicates a non-pestiferous nature.</td>
<td>no</td>
</tr>
<tr>
<td>Testrica antica Walker, 1867</td>
<td>Not assessed</td>
<td>Unlikely: The paucity of available literature on Testrica antica indicates a non-pestiferous nature.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 8 Potential for establishment and economic consequences (invertebrates)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracnemoidea brevicornis (Girault, 1915)</td>
<td>Likely: Furness and Charles (2003) indicates that T. brevicornis parasitises long-tailed a pest with an extensive host range and is present in WA.</td>
<td>Unlikely: Furness and Charles (2003) indicates that T. brevicornis is a biological control agent.</td>
<td>no</td>
</tr>
<tr>
<td>parasitic wasp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranychus kanzawai Kishida, 1927</td>
<td>Likely: T. kanzawai has established in Queensland and New South Wales (Walter 1999).</td>
<td>Likely: Tetranychus kanzawai is a significant polyphagous pest subject to quarantine measures in many parts of the world (Navajas et al. 2001 cited in BA 2011a).</td>
<td>yes</td>
</tr>
<tr>
<td>Kanzawa spider mite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogoderma variabile Ballion 1878</td>
<td>Likely: T. variabile has become established in Australia, with restricted distribution in Queensland and WA (Rees et al. 2003).</td>
<td>Likely: Internationally significant invasive pest of packed goods and stored grain (Castalanelli et al. 2011).</td>
<td>yes</td>
</tr>
<tr>
<td>warehouse beetle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAMA (s22) declared pest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vespula germanica (Fabricus, 1793)</td>
<td>Likely: Spradbery and Maywald (1992) outlines the climatic suitability of WA for V. germanica.</td>
<td>Likely: Davis (2004) outlines the economic and social consequences of European wasp.</td>
<td>yes</td>
</tr>
<tr>
<td>European wasp</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pest categorisation of pathogen organisms

Table 9 Bacteria and phytoplasma associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
</table>
Table 9 Bacteria and phytoplasma associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillales: Bacillaceae</td>
<td>Bacillus thuringiensis Berliner, 1915</td>
<td>PHA 2001a</td>
<td>WA (PHA 2001a)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APVMA 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APVMA 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APVMA 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APVMA 2011)</td>
<td></td>
</tr>
<tr>
<td>Enterobacteriales:</td>
<td>Pantoea agglomerans (Ewing & Fife, 1972)</td>
<td>ADoA 2014</td>
<td>WA (ADoA 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>Gavini et al., 1989</td>
<td></td>
<td>Qld (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bacterial grapevine blight</td>
<td></td>
<td>NSW (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td>Pseudomonadales:</td>
<td>Pseudomonas syringae van Hall, 1902</td>
<td>PHA 2001a</td>
<td>WA (PHA 2001a)</td>
<td>no</td>
</tr>
<tr>
<td>Pseudomonadaceae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001a)</td>
<td></td>
</tr>
</tbody>
</table>
Table 9 Bacteria and phytoplasma associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonadales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonadaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>P. syringae var. syringae van Hall, 1902</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Pseudomonadaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas viridiflava (Burkholder, 1930) Dowson, 1939</td>
<td>ADoA 2014</td>
<td>WA (ADoA 2014)</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td>Rhizobiales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (ADoA 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 9 Bacteria and phytoplasma associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhizobiales: Rhizobiaceae</td>
<td>Rhizobium rubi (Hildebrand, 1940) Young et al., 2001 comb. nov.</td>
<td>PHA 2001a</td>
<td>NSW (PHA 2001a)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>[syn.: Agrobacterium rubi (Hildebrand, 1940) Starr and Weiss, 1943]</td>
<td></td>
<td>SA (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crown gall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhizobium vitis (Ophel & Kerr, 1990) Young et al., 2001</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>[syn.: Agrobacterium vitis Ophel & Kerr, 1990]</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crown gall</td>
<td></td>
<td>Vic (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Peronosporales: Pythiaceae</td>
<td>Phytophthora cryptogea Pethybri. & Laff., 1919</td>
<td>PHA 2001a</td>
<td>WA (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9 Bacteria and phytoplasma associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peronosporales:</td>
<td>Phytophthora drechsleri Tucker, 1931</td>
<td>PHA 2001a</td>
<td>WA</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td>Pythiaceae</td>
<td></td>
<td></td>
<td>Qld</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic.</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas.</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT</td>
<td>(PHA 2001a)</td>
</tr>
<tr>
<td>Peronosporales:</td>
<td>Pythium debaryanum Hesse damping off</td>
<td>BA 2005</td>
<td>WA</td>
<td>(Barbetti & MacNish 1978)</td>
</tr>
<tr>
<td>Pythiaceae</td>
<td></td>
<td></td>
<td></td>
<td>(BA 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aus</td>
<td>(Barbetti & MacNish 1978)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(BA 2005)</td>
</tr>
<tr>
<td>Peronosporales:</td>
<td>Pythium middletonii Sparrow</td>
<td>BA 2005</td>
<td>WA</td>
<td>(Barbetti & MacNish 1978)</td>
</tr>
<tr>
<td>Pythiaceae</td>
<td></td>
<td></td>
<td></td>
<td>(BA 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aus</td>
<td>(Barbetti & MacNish 1978)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(BA 2005)</td>
</tr>
<tr>
<td>Peronosporales:</td>
<td>Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, 1888 downy mildew</td>
<td>PHA 2001b</td>
<td>WA</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td>Pythiaceae</td>
<td></td>
<td></td>
<td>Qld</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic.</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas.</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT</td>
<td>(PHA 2001b)</td>
</tr>
</tbody>
</table>
Table 9 Bacteria and phytoplasma associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xanthomodadales: Xanthomonadaceae</td>
<td>Xanthomonas arboricola Vauterin et al., 1995</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b), Qld (PHA 2001b), NSW (PHA 2001b), Tas. (PHA 2001b), SA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>[syn.: Cyphella curreyi Berk. & Broome, 1861]</td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
<tr>
<td>Agaricales: Niaceae</td>
<td>Lachnella villosa (Pers.) Gillet, 1880</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (AHV 2011)</td>
<td></td>
</tr>
<tr>
<td>Agaricales: Physalacriaceae</td>
<td>Armillaria luteobubalina Watling & Kile, 1978</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Armillaria root rot</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[syn.: Coprinus micaceus (Bull.) Fr., 1838]</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Atheliales: Atheliaceae</td>
<td>Sclerotium rolfsii Sacc.</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Teleomorph: Athelia rolfsii (Curzi) C.C. Tu & Kimbr.</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[syn: Corticium rolfsii Curzi]</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sclerotium stem rot</td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Agaricales: Schizophyllaceae</td>
<td>Schizophyllum commune (L.) Fr., 1815</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryosphaeriales:</td>
<td>Botryosphaeria australis (Cooke) Petr., 1975</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Botryosphaeriaceae</td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Botryosphaeriales:</td>
<td>Botryosphaeria dothidea (Moug.) Ces. & De Not., 1863</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Botryosphaeriaceae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ana: Fusicoccum aesculi Corda]</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macrophoma rot</td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Botryosphaeriaceae</td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Botryosphaeria obtusa (Schwein.) Shoemaker, 1964</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b) Qld (PHA 2001b) NSW (PHA 2001b) Vic. (PHA 2001b) Tas. (Sampson & Walker 1982) SA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>[syn.: Physalospora obtusa (Schwein.) Cooke, 1892]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bark: pome fruit necrosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Botryosphaeriales:</td>
<td>Botryosphaeria parva Pennycook & Samuels, 1985</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>[syn.: Fusicoccum parvum Pennycook & Samuels, 1985]</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Slippers et al. 2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Botryosphaeriales:</td>
<td>Botryosphaeria ribis Gossenb. & Duggar, 1911</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Botryosphaeriaceae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Botryosphaeriaceae</td>
<td>[ana.: Dohlriella sarmentorum (Fr.) A.J.L. Phillips, A. Alves & J. Luque, 2005; syn.: Diplodia sarmentorum (Fr.) Fr., 1849]</td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Botryosphaeriales:</td>
<td>Botryosphaeria stevensii Shoemaker, 1964 [ana.: Diplodia mutila (Fr.) Mont., 1834]</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Botryosphaeriaceae</td>
<td>black dead arm</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Botrysphaeriaceae</td>
<td>Lasiodiplodia cane dieback</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Botryosphaerales: Botrysphaeriaceae</td>
<td>Neoscytalidium dimidiatum (penz.) Crous & Slippers, 2006</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>Qld (PHA 2001b)</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryosphaerales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botrysphaeriaceae</td>
<td>Phyllosticta sp.</td>
<td>BA 2011b</td>
<td>WA (BA 2011b)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>leaf spot</td>
<td></td>
<td>Qld (BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic (BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (BA 2011b)</td>
<td></td>
</tr>
<tr>
<td>Botryosphaerales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incertae sedis</td>
<td></td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VIC (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Calosphaerales:</td>
<td></td>
<td>APPDb 2011</td>
<td>Qld (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Pleuostomataceae</td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>

Botryosphaerales: *Botrysphaeriaceae*
Phyllosticta sp.
leaf spot

Pleurostomophora richardsiae (Nannf.) L. Mostert, W. Gams & Crous, 2004
[syn.: *Phialophora richardsiae* (Nannf.) Conant, 1937]
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capnodiales:</td>
<td>Capnodiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capnodium elongatum Berk. & Desm., 1849</td>
<td>PHA 2001b</td>
<td>Qld</td>
<td>(PHA 2001b) yes</td>
</tr>
<tr>
<td>Capnodiales:</td>
<td>Capnodiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leptothyphium fumago (Woron.) R.C. Srivast., 1982</td>
<td>PHA 2001b</td>
<td>Qld</td>
<td>(PHA 2001b) yes</td>
</tr>
<tr>
<td></td>
<td>[syn.: Fumago vagans Pers., 1822,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cladosporium fumago Link, 1824,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caldariomycetes fumago Woron., 1926]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capnodiales:</td>
<td>Capnodiaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cladosporium cladosporioides (Fresen.)</td>
<td>PHA 2001b</td>
<td>WA Qld NSW ACT Vic. Tas. SA NT</td>
<td>(PHA 2001b) no</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capnodiales: Davidiellaceae</td>
<td>Cladosporium herbarum (Pers.) Link, 1816</td>
<td>Cook & Dubae 1989</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Capnodiales: Davidiellaceae</td>
<td>Cladosporium sphaerospermum Penz., 1882</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Capnodiales: Davidiellaceae</td>
<td>Cladosporium uvarum McAlpine, 1898</td>
<td>Dugan et al. 2004</td>
<td>Vic. (Dugan et al. 2004)</td>
<td>yes</td>
</tr>
<tr>
<td>Capnodiales: Mycosphaerellaceae</td>
<td>Cercospora apii Fresen., 1863</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[syn.: Sphaerella succedanea Pass., 1887]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[syn.: Phaeoramularia dissiliens (Duby) Deighton, 1976]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>leaf blight; Isariopsis leaf spot</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
</table>
| Diaporthales: | *Diaporthe rudis* (Fr.) Nitschke, 1870
 Diaporthe faginea Sacc. (Curr), 1882
 [syn.: *Diaporthe medusaea* Nitschke 1870] | ADoA 2014
 NSW (PHA 2001b) | yes |
| Diaporthaceae | | | | |
| Dothideales: | *Aureobasidium pullulans* (De Bary) G. Arnaud, 1918
 [syn.: *Anthostomella pullans* (de Bary & Lowethal) F.T. Benn 1928
 blue stain: wood] | PHA 2001b
 WA (PHA 2001b)
 Qld (PHA 2001b)
 NSW (PHA 2001b)
 ACT (PHA 2001b)
 Vic. (PHA 2001b)
 Tas. (PHA 2001b)
 SA (PHA 2001b)
 NT (PHA 2001b) | no |
| Dothioraceae | | | | |
| Dothideales: | *Aureobasidium pullulans* var. pullulans 1918
 NSW (APPDb 2011)
 Vic. (APPDb 2011) | yes |
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaporthales: Schizoparmaceae</td>
<td>Pilidiella castaneicola (Ellis & Everh.) Arx [tele.: Schizoparme straminea Shear] [syn.: Coniella castaneicola (Ellis & Everh.) B. Sutton]</td>
<td>ADoA 2014</td>
<td>Qld (PHA 2001b) NSW (PHA 2001b) Vic. (PHA 2001b) NT (PHA 2001b)</td>
<td>yes</td>
</tr>
<tr>
<td>Diaporthales: Togniniaceae</td>
<td>Phaeoacremonium australiense L. Mostert, Summerb. & Crous, 2005 Esca /Petri disease</td>
<td>Mostert et al. 2006</td>
<td>Vic. (Mostert et al. 2006)</td>
<td>yes</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Erysiphales: Erysiphaceae</td>
<td>Erysiphe necator Schwein., 1834 grapevine powdery mildew</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Eurotiales: Trichocomaceae</td>
<td>Aspergillus aculeatus lizuka, 1953</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurotiales: Trichocomaceae</td>
<td>Aspergillus fumigatus Fresen., 1863</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b), Qld (PHA 2001b), NSW (PHA 2001b)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurotiales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichocomaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aspergillus niger Tiegh., 1867</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>berry rot (secondary)</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Eurotiales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichocomaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aspergillus terreus Thom, 1918</td>
<td>ADoA 2014</td>
<td>WA (ADoA 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Eurotiales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichocomaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurotiales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichocomaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Penicillium digitatum (Pers.) Sacc., 1881</td>
<td>BA 2011b</td>
<td>WA (BA 2011b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>green mould</td>
<td></td>
<td>Aust (BA 2011b)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurotiales: Trichocomaceae</td>
<td>Penicillium expansum Link, 1809 blue mould of stored apples</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b), Qld (PHA 2001b), NSW (PHA 2001b), Vic. (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Eurotiales:</td>
<td>Penicillium simplicissimum (Oudem.) Thom, 1930</td>
<td>ADoA 2014</td>
<td>NSW (PHA 2001b) ACT (PHA 2001b) Vic (PHA 2001b)</td>
<td>yes</td>
</tr>
<tr>
<td>Trichocomaceae</td>
<td>[syn.: Penicillium janthinellum Biourge, 1923]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurotiales:</td>
<td>Penicillium viticola Nonaka & Masuma, 2011</td>
<td>ADoA 2014</td>
<td>WA Absent (PHA 2001b) Qld (ADoA 2014) Tas (ADoA 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Trichocomaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helotiales:</td>
<td>Botrytis cinerea Pers., 1794</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b) Qld (PHA 2001b) NSW (PHA 2001b) Vic. (PHA 2001b) Tas. (PHA 2001b) SA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Sclerotiniaceae</td>
<td>[tel.: Botryotinia fuckeliana (De Bary) Whetz., 1945]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Botrytis bunch rot and blight</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helotiales: Sclerotiniaceae</td>
<td>Monilinia fructicola (G. Winter) Honey, 1928, brown rot</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Helotiales: Sclerotiniaceae</td>
<td>Monilinia laxa (Aderh, & Ruhland) Herey, 1945</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helotiales: Sclerotiniaceae</td>
<td>Sclerotinia sclerotiorum (Lib.) de Bary, 1884</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Hymenochaetales: Hymenochaetaceae</td>
<td>Fomitiporia punctata (Fr.) Murrill, 1947</td>
<td>APPDb 2011</td>
<td>Vic. (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenochaetales: Hymenochaetaceae</td>
<td>Phellinus punctatus (Fr.) Pilát, 1942</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales:</td>
<td>Gliocladium roseum Bainier, 1907</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Bionectriaceae</td>
<td>[syn.: Clonostchys araucaria var. confusa Pinkerton, 1926]</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypocreales:</td>
<td>PHA 2001b</td>
<td>Qld (PHA 2001b)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Hypocreaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichoderma citrinoviride Bissett, 1984</td>
<td>PHA 2001b</td>
<td>Qld (PHA 2001b)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichoderma harzianum Rifai, 1969</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales: Nectriaceae</td>
<td>Cylindrocarpon liriodendri J.D. MacDon. & E.E. Butler, 1981</td>
<td>APPDb 2011</td>
<td>Qld (APPDb 2011) NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales: Nectriaceae</td>
<td>Fusarium chlamydosporum Wollenw & Reinking, 1925</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Hypocreales: Nectriaceae</td>
<td>Fusarium culmorum (WG Sm.) Sacc. damping off</td>
<td>BA 2005</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Hypocreales: Nectriaceae</td>
<td>Fusarium oxysporum Schltdl., 1824 Fusarium wilt</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales: Nectriaceae</td>
<td>Fusarium sporotrichioides Sherb., 1915</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011), Qld (APPDb 2011), NSW (APPDb 2011), Vic. (APPDb 2011)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales:</td>
<td>Haematonectrea haemotococca (Berk. &</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Nectriaceae</td>
<td>Broome) Samues & Rossman, 1999</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Syn.: Fusarium solani (Mart.) Sacc, 1881</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry rot</td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Hypocreales:</td>
<td>Ilyonectria macrodidyma (Halleen,</td>
<td>APPDb 2011</td>
<td>Qld (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Nectriaceae</td>
<td>Schroers & Crous) P. Chaverri & C. Salgado,</td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td></td>
<td>ACT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ana.: Cylindrocarpon macrodidymum Schroers,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halleen & Crous, 2004; syn.: *Neonectria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>macrodidyma Halleen, Schroers & Crous, 2004]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocreales:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nectriaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incertae sedis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glomerellaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incertae sedis:

Glomerellaceae

Colletotrichum acutatum J.H. Simmonds, 1968

[ripe rot]

Hypocreales:

Nectriaceae

Ilyonectria radicicola (Gerlach & L. Nilsson) Chaverri & C. Salgado, 2011

Nectria cinnabarina (Tode) Fr

Nectria twig blight

BA 2005

Qld (PHA 2001b) | Vic. (PHA 2001b) | Tas. (PHA 2001b) | yes
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incertae sedis</td>
<td>Cryptovalsa ampelina (Nitschke) Fuckel, 1870</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011) SA (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Incertae sedis</td>
<td>Cryptovalsa rabenhorstii (Nitschke) Sacc., 1877</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Incertae sedis</td>
<td>Papulaspora biformospora Kiril., 1971</td>
<td>PHA 2001b</td>
<td>NSW (PHA 2001b)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14)</th>
</tr>
</thead>
</table>
NSW (APPDb 2011)
ACT (APPDb 2011)
Vic. (APPDb 2011)
SA (APPDb 2011) | no |
| Incertae sedis: Incertae sedis | *Robillarda sessilis* (Sacc.) Sacc., 1884
[syn.: *Pestalotia sessilis* Sacc., 1878] | PHA 2001b | WA (PHA 2001b)
Qld (PHA 2001b) | no |
| Incertae sedis: Monascaceae | *Xeromyces bisporus* L.R. Fraser, 1954 | Herb I.M.I. 2011 | NSW (Herb I.M.I. 2011) | yes |
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucorales: Mucoraceae</td>
<td>Rhizopus stolonifer (Ehrenb.) Vuill., 1902</td>
<td>Cook & Dubae 1989</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>berry rot (secondary)</td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Myriangiales: Elisinoaceae</td>
<td>Elsinoë ampelina Shear, 1929</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>[syn.: Sphaceloma ampelinum de Bary, 1874]</td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[syn.: Gloeosporium pestiferum Cooke & Masse 1890]</td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>grape anthracnose</td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Peronosporales:</td>
<td>Plasmopara viticola (Berk. & M.A. Curtis)</td>
<td>APPDb 2011</td>
<td>WA</td>
<td>no</td>
</tr>
<tr>
<td>Peronosporaceae</td>
<td>Berl. & De Toni, 1888 downy mildew</td>
<td></td>
<td>Qld</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic.</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas.</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td>Pezizales:</td>
<td>Strumella vitis McAlpine, 1898</td>
<td>APPDb 2011</td>
<td>Vic.</td>
<td>yes</td>
</tr>
<tr>
<td>Sarcosomataceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physarales: Physaraceae</td>
<td>Physarum sp.</td>
<td>BA 2011b</td>
<td>WA (Ing and Spooner 1994; APPD 2010 cited in BA 2011b)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>dusty mould</td>
<td></td>
<td>Qld (Ing and Spooner 1994; APPD 2010 cited in BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Ing and Spooner 1994; APPD 2010 cited in BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Ing and Spooner 1994; APPD 2010 cited in BA 2011b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Ing and Spooner 1994; APPD 2010 cited in BA 2011b)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Pleosporales: Incertae sedis</td>
<td>Peyronellaea glomerata (Corda) Goid. ex Togliani</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>[syn.: Phoma glomerata (Corda) Wollenw. & Hochapfel]</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phoma blight</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Washington & Nancarrow 1983)</td>
<td></td>
</tr>
<tr>
<td>Pleosporales: Incertae sedis</td>
<td>Phoma macrostoma Mont., 1849</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleosporales: Incertae sedis</td>
<td>Phoma pomorum Thümm., 1879</td>
<td>Cook & Dubae 1989</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>[Unassigned]: Plectosphaerellaceae</td>
<td>Verticillium dahlia Kleb., 1913</td>
<td>AQIS 1999</td>
<td>WA (ADoA 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aust (AQIS 1999)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Pleosporales:</td>
<td>Cochliobolus cynodontis R.R. Nelson, 1964</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Pleosporaceae</td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ana: Drechslera cynodontis (Marignoni) Subram. & B.L. Jain, 1966]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleosporales:</td>
<td>Cochliobolus geniculatus R.R. Nelson, 1964</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Pleosporaceae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ana.: Curvularia geniculata (Tracy & Earl) Boedijn, 1933]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleosporales:</td>
<td>Cochliobolus spicifer R.R. Nelson, 1964</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Pleosporaceae</td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Pleosporales: Pleosporaceae</td>
<td>Epicoccum nigrum Link, 1815</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td>Pleosporales: Pleosporaceae</td>
<td>Pleospora herbarum (Fr) Rabenh bunch rot</td>
<td>BA 2005</td>
<td>WA (APDDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Pleosporales: Pleosporaceae</td>
<td>Stemphylium botryosum (Wallr.) Stemphylium rot</td>
<td>BA 2011a</td>
<td>WA (APDDb 2014), NSW (BA 2011a), Vic (APDDb 2014), Tas (APDDb 2014), SA (APDDb 2014)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyporales: Polyporaceae</td>
<td>Trametes versicolor (L.) Lloyd, 1921</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>Qld (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
</tr>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Phytophthora cinnamomi Rands, 1922</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>Qld (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Phytophthora megasperma Drechsler, 1931</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Pythium acanthicum Drechsler, 1930</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Viitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Pythium mamillatum Meurs, 1928</td>
<td>Cook & Dubae 1989</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Sampson & Walker 1982)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Pythium rostratum E.J. Butler, 1907</td>
<td>Cook & Dubae 1989</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Pythium spinosum Sawada, 1926</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Pythiales: Pythiaceae</td>
<td>Pythium ultimum Trow, 1901</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Russulales: Stereaceae</td>
<td>Stereum hirsutum (Willd. Ex Fr.) S.F.Gray</td>
<td>BA 2005</td>
<td>WA (APDDb 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APDDb 2014)</td>
<td></td>
</tr>
<tr>
<td>Saccharomycetes:</td>
<td>Geotrichum candidum Link, 1809</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Dipodascaceae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Saccharomycetales:</td>
<td>Saccharomyces cerevisiae Meyen ex E.C.</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Saccharomycetaceae</td>
<td>Hansen, 1883 [syn.: Saccharomyces ellipsoideus Reess, 1870]</td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyctales:</td>
<td>Hanseniaspora uvarum (Niehaus) Shehata, Mrak & Phaff ex M.T. Sm., 1984</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Saccharomycetaceae</td>
<td>[syn.: Kloeckera apiculata (Reess) Janke, 1923]</td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sour rot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Unassigned]:</td>
<td>Zygophiala jamaicensis E.W. Mason [Tele.: Schizothyrium pomi (Mont. & Fr.) Arx] [Syn.: Leptothyrium pomi (Mont. & Fr.) Sacc.] fly speck</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Schizothyriaceae</td>
<td>*[Simmonds 1966 cited in ADoA 2014]</td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Sordariomycetidae:</td>
<td>Collectotrichum fioriniae (Marcelino & Gouli) RG Shivas & YP Tan., 2009</td>
<td>ADoA 2014</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td>Glomerellaceae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Telletiales: Exobasidiomycetidae</td>
<td>Tilletiopsis washingtonesis Nyland, 1950</td>
<td>ADoA 2014</td>
<td>Vic. (ADoA 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Trichosphaeriales: Incertae sedis</td>
<td>Nigrospora sphaerica (Sacc.) E.W. Mason, 1927</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011), Qld (Simmonds 1966), NSW (APPDb 2011)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Pestalotiopsis funerea (Desm.) Steyaert leaf spot</td>
<td>ADoA 2014</td>
<td>Qld</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Pestalotiopsis mangiferae (Henn.) Steyaert grey leaf spot of mango</td>
<td>ADoA 2014</td>
<td>WA</td>
<td>(PHA 2001b)</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Pestalotiopsis menezesiana (Bres. & Torrend) Bissett, 1983</td>
<td>APPDb 2011</td>
<td>NSW</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Pestalotiopsis monochaetioides (Doyer) Steyaert, 1949 [syn.: Pestalozzia monochaetoides]</td>
<td>APPDb 2011</td>
<td>WA</td>
<td>(APPDb 2011)</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to (Table 14))</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Pestalotiopsis uvicola (Speg.) Bissett, 1983 [1982]</td>
<td>PHA 2001b</td>
<td>Qld (PHA 2001b) NSW (PHA 2001b)</td>
<td>yes</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Seimatosporium hysterioides (Fuckel) Brockmann, 1976</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011) ACT (APPDb 2011) SA (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Seimatosporium lonicerae (Cooke) Shoemaker, 1964</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Sporocadus rhododendri (Schwein.) M. Morelet, 1985</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Xylariales: Amphisphaeriaceae</td>
<td>Truncatella angustata (Pers.) S. Hughes, 1958</td>
<td>APPDb 2011</td>
<td>ACT Vic. (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Xylariales: Diatrypaceae</td>
<td>Diatrype stigma (hoffm.) Fr., 1849</td>
<td>ADoA 2014</td>
<td>NT (PHA 2001b)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylariales: Diatrypaceae</td>
<td>Diatrypella vulgaris Trouillas, W. M. Pitt & Gubler, sp. nov.</td>
<td>Trouillas et al. 2011</td>
<td>NSW (Trouillas et al. 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Xylariales: Diatrypaceae</td>
<td>Eutypella citricola Speg., 1899</td>
<td>Trouillas et al. 2011</td>
<td>WA (Trouillas et al. 2011) NSW (Trouillas et al. 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Xylariales: Diatrypaceae</td>
<td>Eutypella microtheca Trouillas, W. M. Pitt & Gubler sp. nov.</td>
<td>Trouillas et al. 2011</td>
<td>NSW (Trouillas et al. 2011) SA (Trouillas et al. 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 10 Fungi associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to (Table 14))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylariales: Xylariaceae</td>
<td>Rosellinia necatrix Berl. ex Prill., 1904 Dematophora root rot</td>
<td>ADoA 2014</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Washington & Nancarrow 1983)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelenchida:</td>
<td>Aphelenchus avenae Bastian, 1865</td>
<td>APPDb 2011</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td>Aphelenchidae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Aphelenchida:</td>
<td>Aphelenchoides coffeae (Zimmeman, 1898)</td>
<td>[Filipjev, 1934]</td>
<td>APPDb 2011</td>
<td>yes</td>
</tr>
<tr>
<td>Aphelenchoiididae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td>Aphelenchida:</td>
<td>Aphelenchoides composticola Franklin, 1957</td>
<td>APPDb 2011</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td>Aphelenchoiididae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Aphelenchoiididae</td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. Association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dorylaimidae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Dorylaimida:</td>
<td>Thornenema cavalcanti Lordello, 1955</td>
<td>APPDb 2011</td>
<td>Qld (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Dorylaimidae</td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Dorylaimida:</td>
<td>Xiphinema americanum Cobb, 1913</td>
<td>APPDb 2011</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td>Dorylaimidae</td>
<td>dagger nematode</td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorylaimida: Dorylaimidae</td>
<td>Xiphinema radicicola Goodey, 1936</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Thompson et al.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Belonolaimidae</td>
<td>Tylenchorhynchus sulcatus de Guiran, 1967</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylenchida: Criconematidae</td>
<td>Hemicycliophora labiata Colbran, 1960</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Criconematidae</td>
<td>Criconemoides similis (Cobb, 1918) Chitwood, 1949</td>
<td>Cook & Dubae 1989</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>[syn.: Mesocriconema similis Cobb, 1918; Macroposthonia similis (Cobb, 1918) De Grisse & Loof (1965)]</td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. Association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Neodolichodorus cassati Siddiqi, 1977</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Neodolichodorus obtusus Andrassy, 1976</td>
<td>APPDb 2011</td>
<td>Qld NSW (Nobbs 2005) (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td>VIC (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Nobbs 2005)</td>
<td>SA (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td>VIC (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (Nobbs 2005)</td>
<td>SA (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td>VIC (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td>Tas. (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td>NT (Nobbs 2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Heteroderidae</td>
<td>Meloidogyne thamesi Chitwood, 1952</td>
<td>APPDb 2011</td>
<td>Qld (Nobbs 2005)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Helicotylenchus caribensis Román, 1965</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Helicotylenchus digonicus Perry, 1959</td>
<td>APPDb 2011</td>
<td>NSW (Nobbs 2005)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Sauer 1981)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[syn.: Helicotylenchus dihysteroideis Siddiqi, 1972]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>common spiral nematode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lance nematode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Pratylenchus alleni Ferris, 1981</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>root lesion nematode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. Association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Pratylenchus goodeyi Sher & Allen, 1953</td>
<td>APPDb 2011</td>
<td>Qld (Nobbs 2005)</td>
<td>yes</td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Pratylenchus hexincus Taylor & Jenkins, 1957</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Pratylenchus loosi Loof, 1960</td>
<td>APPDb 2011</td>
<td>NSW: (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. Association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Pratylenchus pinguicaudatus Corbett, 1969</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Pratylenchus pseudopratensis Seinhorst, 1968</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylenchida:</td>
<td>Radopholus magniglans Sher, 1968</td>
<td>APPDb 2011</td>
<td>WA (APPDb 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Hoplolaimidae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotylenchus brevicaudatus Colbran, 1962</td>
<td>APPDb 2011</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td>Hoplolaimidae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotylenchus gracilidens Sauer, 1958</td>
<td>PHA 2001b</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td>Hoplolaimidae</td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotylenchus incultus Sher, 1965</td>
<td>PHA 2001b</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td>Hoplolaimidae</td>
<td></td>
<td></td>
<td>Qld (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Scutellonema clariceps Phillips, 1971</td>
<td>PHA 2001b</td>
<td>Qld (PHA 2001b)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Hoplolaimidae</td>
<td>Scutellonema insulare Phillips, 1971</td>
<td>PHA 2001b</td>
<td>WA (PHA 2001b)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Tylenchida: Tylenchidae</td>
<td>Coslenchus costatus Siddiqi, 1978</td>
<td>APPDb 2011</td>
<td>WA (Nobbs 2005)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. Association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tylenchida: Tylenchulidae</td>
<td>Paratylenchus baldaccii Raski, 1975</td>
<td>APPDb 2011</td>
<td>Vic. (APPDb 2011)</td>
<td>yes</td>
</tr>
<tr>
<td>Tylenchida: Tylenchulidae</td>
<td>Paratylenchus vandenbrandei Samibaeva, 1966</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 11 Nematodes associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. Association</th>
<th>Australian distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (APPDb 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Washington & Nancarrow 1983)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Cook & Dubae 1989)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NT (Nobbs 2005)</td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Physarida: Didymiaceae</td>
<td>Didema chondrioderma (de Bary & Rostaf.) Kuntze, 1898</td>
<td>APPDb 2011</td>
<td>SA (APPDb 2011)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Unassigned]</td>
<td>Sobemovirus: Sowbane mosaic virus</td>
<td>AQIS 1999</td>
<td>QLD</td>
<td>yes</td>
</tr>
<tr>
<td>Bromoviridae</td>
<td>Alfamovirus Alfalfa mosaic virus</td>
<td>ADoA 2014</td>
<td>All Australian states and territories (Norton and Johnstone 1998 cited in ADoA 2014)</td>
<td>no</td>
</tr>
<tr>
<td>Bromoviridae</td>
<td>Cucumovirus Cucumber mosaic virus</td>
<td>ADoA 2014</td>
<td>WA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QLD (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (PHA 2001b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (PHA 2001b)</td>
<td></td>
</tr>
</tbody>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunyaviridae</td>
<td>Tospovirus: Tomato spotted wilt</td>
<td>DAFF 2013</td>
<td>WA (CABI-EPPO 1999 cited in DAFF 2013)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (CABI-EPPO 1999 cited in DAFF 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (CABI-EPPO 1999 cited in DAFF 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (CABI-EPPO 1999 cited in DAFF 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tas. (CABI-EPPO 1999 cited in DAFF 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (CABI-EPPO 1999 cited in DAFF 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closteroviridae</td>
<td>Closterovirus Grapevine leafroll-associated virus 1 (GLRaV-1) grapevine leaf roll</td>
<td>APPDb 2011</td>
<td>WA (Constable et al. 2010 cited in ADoA 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qld (Constable et al. 2010 cited in ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NSW (Constable et al. 2010 cited in ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vic. (Constable et al. 2010 cited in ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SA (Constable et al. 2010 cited in ADoA 2014)</td>
<td></td>
</tr>
</tbody>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closteroviridae</td>
<td>Closterovirus Grapevine leafroll-associated virus 2 (GLRaV-2) grapevine leaf roll</td>
<td>APPDb 2011</td>
<td>WA (Constable et al. 2010 cited in ADoA 2014)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closteroviridae</td>
<td>Closterovirus Grapevine leafroll-associated virus 4 (GLRaV-4)</td>
<td>DAFF 2013</td>
<td>WA</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Grapevine corky bark – associated with closterovirus (GCBAVO)</td>
<td>DAFF 2013</td>
<td>WA</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aust</td>
<td>(DAFF 2013)</td>
</tr>
<tr>
<td>Picornavirales:</td>
<td>Cherry leaf roll nepovirus</td>
<td>BA 2005</td>
<td>WA</td>
<td>yes</td>
</tr>
<tr>
<td>Cornovirinae</td>
<td></td>
<td></td>
<td>Aust</td>
<td>(BA 2005)</td>
</tr>
<tr>
<td>Picornavirales:</td>
<td>Fabavirus broad bean wilt virus 2</td>
<td>BA 2011a</td>
<td>NSW</td>
<td>yes</td>
</tr>
<tr>
<td>Secoviridae</td>
<td>Broad bean wilt virus</td>
<td>ADoA 2014</td>
<td>(Schwinghamer et al. 2007 cited in BA 2011a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA 2011b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian Distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Picornavirales:</td>
<td>Nepovirus Arabis mosaic virus</td>
<td>ADoA 2014</td>
<td>Vic. (Sharley et al. 1996 cited in ADoA 2014)</td>
<td>yes</td>
</tr>
<tr>
<td>Secoviridae</td>
<td></td>
<td></td>
<td>Tas. (Munro 1987 cited in ADoA 2014)</td>
<td></td>
</tr>
<tr>
<td>Picornavirales:</td>
<td>Nepovirus Grapevine fanleaf virus (GFLV)</td>
<td>APPDb 2011</td>
<td>NSW (APPDb 2011) Vic. (Habili et al. 2001) SA (Habili et al. 2001)</td>
<td>yes</td>
</tr>
<tr>
<td>Secoviridae</td>
<td>grapevine fanleaf virus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picornavirales:</td>
<td>Nepovirus Strawberry latent ringspot</td>
<td>BA 2005</td>
<td>WA Absent (BA 2005)</td>
<td>yes</td>
</tr>
<tr>
<td>Secoviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picornavirales:</td>
<td>Nepovirus Tomato ringspot virus</td>
<td>BA 2005</td>
<td>WA Absent (BA 2005)</td>
<td>yes</td>
</tr>
<tr>
<td>Secoviridae</td>
<td>grapevine yellow vein</td>
<td>AQIS 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Australian grapevine viroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian Distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Pospiviroidae</td>
<td>Aspcaviriod Australian grapevine viroid</td>
<td>DAFF 2013</td>
<td>WA Aust (DAFF 2013) (DAFF 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Pospiviroidae</td>
<td>Hostuviroid Hop stunt viroid (HSVd) hop stunt viroid</td>
<td>ADoA 2014</td>
<td>Vic. SA (Koltunow et al. 1988) (Rezaian et al. 1988)</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 13 Virus and viroids associated with Australian viticulture

<table>
<thead>
<tr>
<th>Higher classification</th>
<th>Organism</th>
<th>Vitis spp. association</th>
<th>Australian Distribution</th>
<th>Consider further (if yes go to Table 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Citrus exocortis viroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tombusviridae</td>
<td>Nectroviroid Tobacco necrosis viruses (TNV-?)</td>
<td>ADoA 2014 AQIS 1999 BA 2011a</td>
<td>Qld (Finlay and Teakle 1969 cited in ADoA 2014) Vic. (Finlay and Teakle 1969 cited in ADoA 2014)</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tymovirales: Betaflexiviridae</td>
<td>Foveavirus Rupestris stem pitting-associated virus (RSPaV)</td>
<td>APPDb 2011</td>
<td>WA (Collins 2001) Aust (ADoA 2014)</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Rupestris stem pitting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian Distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tymovirales: Betaflexiviridae</td>
<td>Vitivirus Grapevine A virus (GVA)</td>
<td>DAFF 2013</td>
<td>WA (DAFF 2013)
 Qld (DAFF 2013)
 Vic. (DAFF 2013)
 SA (DAFF 2013)</td>
<td>no</td>
</tr>
<tr>
<td>Tymovirales: Betaflexiviridae</td>
<td>Vitivirus Grapevine B virus (GVB)</td>
<td>DAFF 2013</td>
<td>Vic. (DAFF 2013)
 SA (DAFF 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Tymovirales: Betaflexiviridae</td>
<td>Vitivirus: Grapevine virus d (GVD)</td>
<td>DAFF 2013</td>
<td>WA
 Aust Absent (DAFF 2013)</td>
<td>yes</td>
</tr>
<tr>
<td>Higher classification</td>
<td>Organism</td>
<td>Vitis spp. association</td>
<td>Australian Distribution</td>
<td>Consider further (if yes go to Table 14)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria & Phytoplasmas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckland Valley grapevine yellows (BVGY)</td>
<td>Unlikely: Phytoplasmas are generally transmitted by graft transmission and leafhoppers in grapevines ((Pearson & Goheen 1988; Constable et al. 2002). An insect vector has not been identified for BVGY (Constable et al. 2009).</td>
<td>no</td>
</tr>
<tr>
<td>Australian grapevine yellows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizobium rubi (Hildebrand, 1940) Young et al., 2001 comb. nov.</td>
<td>Unlikely: Rhizobium rubi is associated with crown gall on canes of Rubus spp. and Vitis spp. (Young et al. 2001).</td>
<td>no</td>
</tr>
<tr>
<td>crown gall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria vitis Cavara, 1888</td>
<td>Likely: Associated with grape berries (Washington & Nancarrow 1983).</td>
<td>yes</td>
</tr>
<tr>
<td>Ascochyta ampelina Sacc., 1878</td>
<td>Unlikely: Ascochyta ampelina is primarily a leaf pathogen (Kiewnick 1989).</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association at the source orchard</td>
<td>Consider further (if yes go to Table 15)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Ascochyta chlorospora Speg., 1879</td>
<td>Unlikely: Ascochyta chlorospora is generally associated with leaves of Prunus spp.</td>
<td>no</td>
</tr>
<tr>
<td>Aspergillus aculeatus Iizuka, 1953</td>
<td>Likely: Aspergillus spp. are often associated with berry rots (Pearson & Goheen 1988) and the record of A. aculeatus was from fruit (APPDb 2011).</td>
<td>yes</td>
</tr>
<tr>
<td>Aspergillus atropurpureus Zimm., 1902</td>
<td>Likely: Aspergillus spp. are often associated with berry rots (Pearson & Goheen 1988) and the record of A. atropurpureus was associated with black mould (Washington & Nancarrow 1983).</td>
<td>yes</td>
</tr>
<tr>
<td>Aspergillus carbonarius (Bainier) Thom, 1916</td>
<td>Likely: Aspergillus spp. are often associated with berry rots (Pearson & Goheen 1988) and the record of A. carbonarius was associated with grape berries (PHA 2001b).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aureobasidium pullulans var. pullulans, 1918</td>
<td>Likely: Aureobasidium pullulans var. pullulans has been isolated from grape berries (APDDb 2014).</td>
<td>yes</td>
</tr>
<tr>
<td>Botryosphaeria iberica A.J.L. Phillips, J. Luque & A. Alves, 2005</td>
<td>Likely: Botryosphaeria species are most commonly associated with wood decay and canker (Urbez Torres et al. 2007 cited in DAFF 2013) but can also be associated with bunch rot (Cooperative Research Centre for Viticulture 2005, Wunderlick et al. 2010 cited in DAFF 2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Botryosphaeria sarmentosum A.J.L. Phillips, J. Luque & A. Alves, 2005</td>
<td>Likely: Botryosphaeria species are most commonly associated with wood decay and canker (Urbez Torres et al. 2007 cited in DAFF 2013) but can also be associated with bunch rot (Cooperative Research Centre for Viticulture 2005, Wunderlick et al. 2010 cited in DAFF 2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association at the source orchard</td>
<td>Consider further (if yes go to Table 15)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Capnodium elongatum Berk. & Desm., 1849</td>
<td>Likely: Capnodium sp. are saprophytic fungi that live on insect honeydew (Horst 2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Cladophialophora bantiana (Sacc.) de Hoog, Kwon-Chung & McGinnis, 1995</td>
<td>Unlikely: Reported in association with canes (Washington & Nancarrow 1983).</td>
<td>no</td>
</tr>
<tr>
<td>Cladosporium uvarum McAlpine, 1898</td>
<td>Likely: Cladosporium spp. are often associated with berry rots (Pearson & Goheen 1988). C. uvarum was described in association with berries (Dugan et al. 2004).</td>
<td>yes</td>
</tr>
<tr>
<td>Cryptovalsa ampelina (Nitschke) Fuckel, 1870</td>
<td>Unlikely: Reported in association with grapevine canes (Mostert et al. 2004; APPDb 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Cylindrocarpon liriodendri J.D. MacDon. & E.E. Butler, 1981</td>
<td>Unlikely: Cylindrocarpon liriodendri associated with black-foot root disease of grapevines (Whitelaw-Weckert et al. 2007).</td>
<td>no</td>
</tr>
<tr>
<td>Cytospora mammosa McAlpine, 1898</td>
<td>Likely: Reported in association with grape berries (Washington & Nancarrow 1983).</td>
<td>yes</td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association at the source orchard</td>
<td>Consider further (if yes go to Table 15)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Diaporthes rudi (Fr.) Nitschke, 1870</td>
<td>Unlikely: Found on bark of branches and twigs, also reported on leaves of hosts (Farr & Rossman, 2012 cited in ADoA 2014). Causes bud blight of grapevine (Fukaya et al. 1988, Fukaya and Kato 1994 cited in ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Diatrype stigma (hoffm.) Fr., 1849</td>
<td>Unlikely: Reported from cankered wood of grapevines in California and colonisation of dormant canes/mature wood causing vascular necrosis. (ADoA 2014). No association with grape bunches was found. (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Diatrypella vulgaris Trouillas, W. M. Pitt & Gubler, sp. nov.</td>
<td>Unlikely: Isolated from cankers on grapevines (Trouillas et al. 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Diplodia sclerotiorum Viala & Sacc., 1892</td>
<td>Unlikely: Reported in association with leaves (APPDb 2011).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eutypella microtheca Trouillas, W. M. Pitt & Gubler sp. nov.</td>
<td>Unlikely: Isolated from dead branches of grapevines (Trouillas et al. 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Fomitiporia australiensis M. Fisch., J. Edwards, Cunningt. & Pascoe, 2005</td>
<td>Unlikely: Fomitiporia australiensis has been isolated from stems and trunks of grapevines in association with canker and heart rot (Fischer et al. 2005; APPDb 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Fomitiporia punctata (Fr.) Murrill, 1947</td>
<td>Unlikely: Fomitiporia punctata has been isolated from stems of grapevines in association with white heart rot (Fischer et al. 2005; APPDb 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Greeneria uvicola (Berk. & M.A. Curtis) Punith., 1974 bitter rot</td>
<td>Likely: Greeneria uvicola is associated with bitter rot of fruit of grapevines (Pearson & Goheen 1988). Recorded from grape berry in Australia (PHA 2001b).</td>
<td>yes</td>
</tr>
<tr>
<td>Hendersonia corticalis Ellis & Everh.</td>
<td>Likely: Reported in association with fruit (Washington & Nancarrow 1983).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lachnella alboviolascens (Alb. & Schwein.) Fr., 1849</td>
<td>Unlikely: One record of this fungus on grapevines was associated with bark (Washington & Nancarrow 1983). Generally associated with woody and herbaceous stems (Farr & Rossman 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Leptoxypium fumago (Woron.) R.C. Srivast., 1982</td>
<td>Unlikely: Isolated from Vitis sp. leaf (APPDb 2011).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monochaetinula ampelophila (Speg.) Nag Raj, 1993</td>
<td>Unlikely: Monochaetia species (syn. M. ampelophila) are generally reported in association with leaves (Sutton 1980).</td>
<td>no</td>
</tr>
<tr>
<td>Pestalotiopsis funerea (Desm.) Steyaert leaf spot</td>
<td>Unlikely: Affects leaves, stems and roots of its hosts (Mordue 1976 cited in ADoA 2014). No report of association with grape bunches was found (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Mycosphaerella succedanea (Pass.) Tomilin, 1970</td>
<td>Unlikely: Reported in association with leaves (APPDb 2011). The genus Mycosphaerella are generally considered follicolous (growing, or living, on leaves) (CBS-KNAW 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Nectria cinnabarina (Tode) Fr</td>
<td>Unlikely: N. cinnabarina acts mostly as a saprophyte, living on dead plant tissue, and as such is not generally considered a serious pathogen. However, it is also weakly pathogenic, colonizing stems and branches weakened by mechanical injury, physiological stress, or other disease (BA 2005).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papulaspora biformosa Kiril., 1971</td>
<td>Unlikely: Reported in association with Vitis vinifera roots (APPDb 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Penicillium bicolor (Lilj.) Fr., 1832</td>
<td>Likely: Penicillium spp. are commonly associated with berry rots (Pearson & Goheen 1988).</td>
<td>yes</td>
</tr>
<tr>
<td>Penicillium simplicissimum (Oudem.) Thom, 1930</td>
<td>Likely: Penicillium spp. are commonly associated with berry rots (Pearson & Goheen 1988).</td>
<td>yes</td>
</tr>
<tr>
<td>Penicillium viticola Nonaka & Masuma, 2011</td>
<td>Likely: Penicillium viticola has been isolated from grape bunches (ADoA 2014).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pestalotiopsis menezesiana (Bres. & Torrend) Bissett, 1983</td>
<td>Likely: Pestalotiopsis menezesiana has been reported in association with defoliation of grapevines and berry rot (Sergeeva et al. 2005).</td>
<td>yes</td>
</tr>
<tr>
<td>Pestalotiopsis uvicola (Speg.) Bissett, 1983</td>
<td>Likely: Pestalotiopsis uvicola has been reported in association with wood and berry rot of grapevines (Sergeeva et al. 2005).</td>
<td>yes</td>
</tr>
<tr>
<td>Phaeoacremonium australiense L. Mostert, Summerb. & Crous, 2005</td>
<td>Unlikely: Reported in association with grapevine canes and stems (Mostert et al. 2006; APPDb 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Phellinus punctatus (Fr.) Pillát, 1942</td>
<td>Unlikely: Reported in association with Esca/heart rot affecting stems (APPDb 2011).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllosticta sp.</td>
<td>Unlikely: Phyllosticta leaf spot only affects leaves (NPQS 2007 cited in BA 2011b).</td>
<td>no</td>
</tr>
<tr>
<td>leaf spot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilidiella castaneicola (Ellis & Everh)</td>
<td>Likely: Causes white rot of table grapes. It affects rachis, pedicel and berries (ADoA 2014).</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurostomophora richardsiae (Nannf.) L. Mostert, W. Gams & Crous, 2004</td>
<td>Unlikely: Reported in association with grapevine trunks and causing vascular discolouration similar to Petri disease (Halleen et al. 2007).</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoma tuberculata McAlpine, 1898</td>
<td>Likely: Phoma tuberculata was described from berries with soft rot symptoms (CABI Bioscience 2011).</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phomopsis viticola (Sacc.) Sacc., 1915</td>
<td>Likely: Phomopsis viticola is known to infect berries (Pearson & Goheen 1988; Savocchia et al. 2007).</td>
<td>yes</td>
</tr>
<tr>
<td>Phomopsis cane and leaf spot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physarum sp.</td>
<td>Unlikely: Physarum mould occurs on leaves of grapevines (BA 2011b).</td>
<td>no</td>
</tr>
<tr>
<td>dusty mould</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudocercospora vitis (Lév.) Spec., 1910</td>
<td>Unlikely: Reported as causing leaf blight (Pearson & Goheen 1988; APPDb 2011). Infects leaves (ADoA 2014). No report of association with grape bunches (ADoA 2014).</td>
<td>no</td>
</tr>
<tr>
<td>Pythium rostratum E.J. Butler, 1907</td>
<td>Unlikely: Pythium spp. are generally associated with damping-off and root diseases (Hawksworth et al. 1995).</td>
<td>no</td>
</tr>
<tr>
<td>Sarocladium strictum (W. Gams) Summerbell</td>
<td>Unlikely: Associated with wood (APPDb 2011), also sometimes isolated as an endophytic pathogen associated with twigs, leaves and clusters (Garijo et al. 2011; González & Tello 2011)</td>
<td>no</td>
</tr>
<tr>
<td>Seimatosporium hysteroides (Fuckel) Brockmann, 1976</td>
<td>Unlikely: Reported in association with twigs, stems and canes (Sergeeva et al. 2005).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphaerella fumaginea Catt., 1879</td>
<td>Unlikely: Original description based on isolate from grapevine branches and twigs (CABI Bioscience 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Sphaerella vitis Fuckel, 1870</td>
<td>Unlikely: Original description based on isolate from grapevine leaves (CABI Bioscience 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Sporocadus rhododendri (Schwein.) M. Morelet, 1985</td>
<td>Unlikely: Reported in association with canes (Sergeeva et al. 2005; APPDb 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Strumella vitis McAlpine, 1898</td>
<td>Likely: Reported in association with fruit (Washington & Nancarrow 1983; APPDb 2011).</td>
<td>yes</td>
</tr>
<tr>
<td>Talaromyces wortmannii (Klocker) C.R. Benjamin, 1955</td>
<td>Unlikely: Primarily reported for soil and seeds (BA 2005; Pitt & Hocking 2009).</td>
<td>no</td>
</tr>
<tr>
<td>Tilletiopsis washingtonesis Nyland, 1950</td>
<td>Unlikely: Members of this genus are saprophytes and colonise the leaf surface (Urquhart et al. 1997 cited in ADoA 2014).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torula viticola Allesch.</td>
<td>Likely: There is some evidence to suggest that T. viticola may occur on bunch tissues, as it has been reported on cane tissue of V. vinifera in Victoria (Washington & Nancarrow 1983).</td>
</tr>
<tr>
<td>Trichoderma citrinoviride Bissett 1984</td>
<td>Unlikely: Trichoderma sp. are cosmopolitan in soils and on decaying wood and vegetable matter (Gams & Bissett 2002).</td>
</tr>
<tr>
<td>Truncatella angustata (Pers.) S. Hughes, 1958</td>
<td>Unlikely: Reported in association with stems (APPDb 2011) and as an endophyte on twigs and branches (González & Tello 2011).</td>
</tr>
<tr>
<td>Venturia tremulae Aderh., 1897</td>
<td>Unlikely: Pathogen will cause leaf fall, recurrent infection cause poor growth & dieback (Smith et al. 1988).</td>
</tr>
<tr>
<td>Xeromyces bisporus L.R. Fraser, 1954</td>
<td>Unlikely: Xeromyces bisporus is a food spoilage fungi, associated with dried fruit (Dallyn & Everton 1969; Herb I.M.I. 2011).</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nematodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aphelenchoides coffeae (Zimmeman, 1898) Filipjev, 1934</td>
<td>Unlikely: Aphelenchoides spp. are ectoparasites that generally feed on leaves and stems (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Aphelenchoides limberi Steiner, 1936</td>
<td>Unlikely: Aphelenchoides spp. are ectoparasites that generally feed on leaves and stems (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Criconema mutabile Taylor, 1936</td>
<td>Unlikely: Criconema mutabile has been reported in association with grapes in soil around the rhizosphere (Deimi & Mitkowski 2010).</td>
<td>no</td>
</tr>
<tr>
<td>Discolaimus agricolus Sauer & Annells, 1986</td>
<td>Unlikely: Collected from vineyard soil (Sauer & Annells 1985).</td>
<td>no</td>
</tr>
<tr>
<td>Helicotylenchus caribensis Román, 1965</td>
<td>Unlikely: Helicotylenchus species are ecto-parasitic, semi-endo-parasitic or endoparasitic nematodes of roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicotylenchus digonicus Perry, 1959</td>
<td>Unlikely: Helicotylenchus species are ecto-parasitic, semi-endo-parasitic or endoparasitic nematodes of roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Helicotylenchus varicaudatus Yuen, 1964</td>
<td>Unlikely: Helicotylenchus species are ecto-parasitic, semi-endo-parasitic or endoparasitic nematodes of roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Hemicriconemoides sp. Chitwood & Birchfield, 1957</td>
<td>Unlikely: Hemicriconemoides species are generally associated with roots and found in soil around the rhizosphere (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Meloidogyne thamesi Chitwood, 1952</td>
<td>Unlikely: Meloidogyne species are associated with roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Neodolichodorus cassati Siddiqi, 1977</td>
<td>Unlikely: Neodolichodorus species belong to the awl nematode group and are associated with aquatic environments and soil (Nickle 1991).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neodolicodorus obtusus Andrassy, 1976</td>
<td>Unlikely: Neodolicodorus species belong to the awl nematode group and are associated with aquatic environments and soil (Nickle 1991).</td>
<td>no</td>
</tr>
<tr>
<td>Paratylenchus baldaccii Raski, 1975</td>
<td>Unlikely: Paratylenchus species are obligate root parasites of a large range of plant species (Siddiqi 2000).</td>
<td>no</td>
</tr>
<tr>
<td>Paratylenchus coronatus Colbran, 1965</td>
<td>Unlikely: Paratylenchus species are obligate root parasites of a large range of plant species (Siddiqi 2000).</td>
<td>no</td>
</tr>
<tr>
<td>Paratylenchus dianthus Jenkins & Taylor, 1956</td>
<td>Unlikely: Paratylenchus species are obligate root parasites of a large range of plant species (Siddiqi 2000).</td>
<td>no</td>
</tr>
<tr>
<td>Paratylenchus hamatus Thorne, 1950</td>
<td>Unlikely: Paratylenchus species are obligate root parasites of a large range of plant species (Siddiqi 2000).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paratylenchus projectus</td>
<td>Unlikely: Paratylenchus species are obligate root parasites of a large range of plant species (Siddiqi 2000).</td>
<td>no</td>
</tr>
<tr>
<td>Paratylenchus vandenbrandei</td>
<td>Unlikely: Paratylenchus species are obligate root parasites of a large range of plant species (Siddiqi 2000).</td>
<td>no</td>
</tr>
<tr>
<td>Pratylenchus alleni</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990)</td>
<td>no</td>
</tr>
<tr>
<td>Pratylenchus goodeyi</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990)</td>
<td>no</td>
</tr>
<tr>
<td>Pratylenchus hexincisus</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990)</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratylenchus jordanensis Hashim, 1983</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Pratylenchus loosi Loof, 1960</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Pratylenchus pinguicaudatus Corbett, 1969</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Pratylenchus pseudopratensis Seinhorst, 1968</td>
<td>Unlikely: Pratylenchus species are migratory endoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Scutellonema clariceps Phillips, 1971</td>
<td>Unlikely: Scutellonema species are primarily ectoparasites of roots (O’Bannon & Duncan 1990).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thornenema cavalcanti Lordello, 1955</td>
<td>Unlikely: Members of the family Diphterophoridae are soil and marine dwelling nematodes (Nickle 1991).</td>
<td>no</td>
</tr>
<tr>
<td>Trichodorus sp. Cobb, 1913</td>
<td>Unlikely: Trichodorus species are ectoparasites that feed on root sof perennial and woody plants (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Tylenchorhynchus sp. Cobb, 1930</td>
<td>Unlikely: Tylenchorhynchus species are migratory ecto-, semi-ecto- or endo-parasites that feeds on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Tylenchorhynchus sulcatus de Guiran, 1967</td>
<td>Unlikely: Tylenchorhynchus species are migratory ecto-, semi-ecto- or endo-parasites that feeds on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Xiphinema index Thorne & Allen, 1950</td>
<td>Unlikely: Xiphinema species are migratory ectoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiphinema monohysterum Brown, 1968</td>
<td>Unlikely: Xiphinema species are migratory ectoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Xiphinema pachtaicum Tulaganov, 1938</td>
<td>Unlikely: Xiphinema species are migratory ectoparasites that feed on roots (Luc et al. 1990).</td>
<td>no</td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diderma chondrioderma (de Bary & Rostaf.) Kuntze, 1898</td>
<td>Unlikely: D. chondrioderma is a slime mould and was reported in association with a grapevine stem.</td>
<td>no</td>
</tr>
<tr>
<td>Viruses/Viroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apscaviroid Australian grapevine viroid (AGVd)</td>
<td>Likely: Infects systemically; present in fruit and seed (Hadidi et al. 2003).</td>
<td>yes</td>
</tr>
</tbody>
</table>

Australian grapevine viroid
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apscaviroid Grapevine yellow speckle viroid (GYSVd) stra...</td>
<td>Likely: Infects systemically; present in fruit and seed (Hadidi et al. 2003).</td>
<td>yes</td>
</tr>
<tr>
<td>- grapevine yellow speckle viroid, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apscaviroid Grapevine yellow speckle viroid (GYSVd) stra...</td>
<td>Likely: Infects systemically; present in fruit and seed (Hadidi et al. 2003).</td>
<td>yes</td>
</tr>
<tr>
<td>- grapevine yellow speckle viroid, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry leaf nepovirus</td>
<td>Unlikely: Causes chlorotic ringspots, leaf patterns and/or yellow vein netting. Virus transmitted by mechanical inoculation; transmitted by grafting; not transmitted by contact between plants (BA 2005).</td>
<td>no</td>
</tr>
<tr>
<td>Fabavirus broad bean wilt virus, 2</td>
<td>Likely: Recorded in grapevine. Probably infects systemically (BA 2011a).</td>
<td>yes</td>
</tr>
<tr>
<td>- broad bean wilt virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hostuviroid Hop stunt viroid (HSVd)</td>
<td>Likely: Infects systemically; present in fruit and seed (Hadidi et al. 2003).</td>
<td>yes</td>
</tr>
<tr>
<td>- hop stunt viroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Pathway association at the source orchard</td>
<td>Consider further (if yes go to Table 15)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nepovirus Arabis mosaic virus</td>
<td>Likely: This virus is associated with grapevine degeneration or decline (Martelli 2010 cited in ADoA 2014). Transmitted through seed of a number of species and found in infected weed seeds (Murant 1970 cited in ADoA 2014).</td>
<td>yes</td>
</tr>
<tr>
<td>Sobemovirus: Sowbane mosaic virus</td>
<td>Unlikely: Virus is detected in stem tissue and transmitted by mechanical inoculation or by seed. Infection is latent but very rare in Vitis sp. (ICTVdB Management 2006).</td>
<td>no</td>
</tr>
<tr>
<td>Nectrovirus Tobacco necrosis viruses (TNV-?)</td>
<td>Likely: The strain of Tobacco necrosis virus found in grapevine in South Africa spreads systemically (Cesati and Van Regenmortel 1969); probably present in grape bunches (ADoA 2014).</td>
<td>yes</td>
</tr>
<tr>
<td>Nepovirus Grapevine fanleaf virus (GFLV) grapevine fanleaf virus</td>
<td>Likely: Infects systemically; present in fruit and seed. Associated with the endosperm of grape seeds (Habili et al. 2001).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 14 Pathogens associated with the table grape bunch pathway

<table>
<thead>
<tr>
<th>Organism</th>
<th>Pathway association at the source orchard</th>
<th>Consider further (if yes go to Table 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepovirus Strawberry latent ringspot</td>
<td>Unlikely: Long distance spread occurs via infected propagation material and local dissemination occurs via its root-feeding nematode vectors - Xiphinema diversicaudatum and X. coxi (Kreiah et al. 1994; CABI-EPPO 1997a; Adekunle et al. 2006 cited in DAFF 2013).</td>
<td>no</td>
</tr>
<tr>
<td>Nepovirus Tomato ringspot virus</td>
<td>Unlikely: No evidence to suggest this virus is seed borne in table grapes (BA 2005).</td>
<td>no</td>
</tr>
<tr>
<td>grapevine yellow vein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pospiviroid Citrus exocortis viroid (CEVd)</td>
<td>Likely: Infects systemically; present in fruit and seed (Hadidi et al. 2003).</td>
<td>yes</td>
</tr>
<tr>
<td>citrus exocortis viroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitivirus Grapevine B virus (GVB)</td>
<td>Likely: Infects systemically; probably present in fruit and rachis (Martelli 1997).</td>
<td>yes</td>
</tr>
<tr>
<td>Vitivirus: Grapevine virus d (GVD)</td>
<td>Likely: Infects systemically. There is potential for it to be associated with the vascular tissues in table grape bunches (DAFF 2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria vitis Cavara, 1888</td>
<td>Likely: Other Alternaria spp. are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Alternaria vitis primarily causes a leaf blight on Vitis spp. (Deepthi et al. 2009; Suhag et al. 1982). Very little information available as a berry rot other than in (Washington & Nancarrow 1983).</td>
</tr>
<tr>
<td>Aspergillus aculeatus Iizuka, 1953</td>
<td>Likely: Other Aspergillus spp. are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Aspergillus aculeatus is a secondary invader of damaged berries (Pearson & Goheen 1988) and has been reported as a post-harvest pathogen of tomatoes (Kozakiewicz 2003).</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus atropurpureus Zimm., 1902</td>
<td>Likely: Other Aspergillus species are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Aspergillus species are generally secondary invaders of damaged berries (Pearson & Goheen 1988). A. atropurpureus has not been reported as a pathogen of any other plant species (Farr & Rossman 2011).</td>
<td>no</td>
</tr>
<tr>
<td>Aspergillus carbonarius (Bainier) Thom, 1916</td>
<td>Likely: Other Aspergillus spp. are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Aspergillus spp. are generally secondary invaders of damaged berries (Pearson & Goheen 1988). A. atropurpureus has not been reported as a pathogen of any other plant species (Farr & Rossman 2011).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aureobasidium pullulans var. pullulans 1918</td>
<td>Likely: Hosts of the fungus listed by (Farr & Rossman 2011) are cultivated in Western Australia. Other Aureobasidium spp. are established in Western Australia (Plant Health Australia 2001).</td>
<td>Unlikely: Aureobasidium pullulans var. pullulans as Auerobasidium vitis var. tuberculatum has only been reported in association with grapevines twice and there are no reports of economic damage (Du Plessis 1948; Washington & Nancarrow 1983).</td>
<td>no</td>
</tr>
<tr>
<td>Botryosphaeria iberica A.J.L. Phillips, J. Luque & A. Alves, 2005</td>
<td>Likely: Table grape vineyards are located from Gascoyne region in the north of the State to the South-West region of WA (DAFWA 2006). Western Australia is a notable fine wine producer. Wine grape vineyards are located in diverse areas of the South West of WA (DAFWA 2014a).</td>
<td>Likely: Due to their pathogenicity, prevalence, distribution and tolerance to a wide range of environmental conditions, Botryosphaeriaceae pose a significant threat to the Australian wine industry (Pitt et al. 2013).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botryosphaeria sarmentosum A.J.L. Phillips, J. Luque & A. Alves, 2005</td>
<td>Likely: Table grape vineyards are located from Gascoyne region in the north of the State to the South-West region of WA (DAFWA 2006). Western Australia is a notable fine wine producer. Wine grape vineyards are located in diverse areas of the South West of WA (DAFWA 2014a).</td>
<td>Likely: Due to their pathogenicity, prevalence, distribution and tolerance to a wide range of environmental conditions, Botryosphaeriaceae pose a significant threat to the Australian wine industry (Pitt et al. 2013).</td>
<td>yes</td>
</tr>
<tr>
<td>Capnodium elongatum Berk. & Desm., 1849</td>
<td>Likely: Table grape vineyards are located from Gascoyne region in the north of the State to the South-West region of WA (DAFWA 2006). Western Australia is a notable fine wine producer. Wine grape vineyards are located in diverse areas of the South West of WA (DAFWA 2014a).</td>
<td>Likely: Excretion of sticky honeydew by mealybugs leads to sooty mould development on leaves and bunches if large populations arise. Sooty mould covering leaves can reduce photosynthesis and mould on grapes can make the fruit unsaleable or lead to rotting (Dunn & Zurbo 2014).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladosporium uvarum McAlpine, 1898</td>
<td>Likely: Hosts of the fungus listed by Farr & Rossman (Farr & Rossman 2011) are cultivated in Western Australia. Spores are airborne (Erkara et al. 2008). The fungus has established in other parts of Australia (Dugan et al. 2004).</td>
<td>Unlikely: No evidence of economic significance (Nicholas et al. 1994).</td>
<td>no</td>
</tr>
<tr>
<td>Cytospora mammosa McAlpine, 1898</td>
<td>Likely: Vitis vinifera is the only reported host of Cytospora mammosa and is cultivated in Western Australia (Washington & Nancarrow 1983)</td>
<td>Unlikely: There has only been one report of this fungus worldwide and it is not listed as a major pathogen of grapes (Pearson & Goheen 1988; Nicholas et al. 1994).</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
<td>Quarantine pest status</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>bitter rot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hendersonia corticalis Ellis & Everh.</td>
<td>Not assessed</td>
<td>Unlikely: There are very few reports of this fungus worldwide and it is not listed as a major pathogen of grapes (Pearson & Goheen 1988; Nicholas et al. 1994).</td>
<td>no</td>
</tr>
<tr>
<td>Hendersonia tenuipes McAlpine, 1898</td>
<td>Not assessed</td>
<td>Unlikely: There are very few reports of this fungus worldwide and it is not listed as a major pathogen of grapes (Pearson & Goheen 1988; Nicholas et al. 1994).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillium bicolor (Lilj.) Fr., 1832</td>
<td>Likely: Penicillium spp. affect most kinds of fruit and vegetables (ADoA 2014). Many other Penicillium spp. are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Species of Penicillium associated with berry rot are generally secondary invaders (Pearson & Goheen 1988). Current management practices including good hygiene practices are likely to control additional Penicillium spp. (Pearson & Goheen 1988).</td>
<td>no</td>
</tr>
<tr>
<td>Penicillium simplicissimum (Oudem.) Thom, 1930</td>
<td>Likely: Penicillium spp. affect most kinds of fruit and vegetables (ADoA 2014). Many other Penicillium spp. are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Species of Penicillium associated with berry rot are generally secondary invaders (Pearson & Goheen 1988). Current management practices including good hygiene practices are likely to control additional Penicillium spp. (Pearson & Goheen 1988).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillium viticola Nonaka & Masuma, 2011</td>
<td>Likely: Penicillium spp. affect most kinds of fruit and vegetables (ADoA 2014). Many other Penicillium spp. are established in Western Australia (APPDb 2011).</td>
<td>Unlikely: Species of Penicillium associated with berry rot are generally secondary invaders (Pearson & Goheen 1988). Current management practices including good hygiene practices are likely to control additional Penicillium spp.(Pearson & Goheen 1988).</td>
<td>no</td>
</tr>
<tr>
<td>Pestalotiopsis menezesiana (Bres. & Torrend) Bissett, 1983</td>
<td>Likely: Hosts of this fungus listed by Farr and Rossman (2011) are cultivated in Western Australia.</td>
<td>Likely: This fungus has been implicated in causing severe defoliation of grapevines and a rot of berries in India and has been shown to cause fruit rotting in Japan (Sergeeva et al. 2005).</td>
<td>yes</td>
</tr>
<tr>
<td>Pestalotiopsis uvicola (Speg.) Bissett, 1983</td>
<td>Likely: Hosts of this fungus listed by Farr and Rossman (2011) are cultivated in Western Australia.</td>
<td>Likely: This fungus has been shown to cause a rot of berries in Japan (Xu et al. 1999 cited in ADoA 2014) and in eastern Australia (Sergeeva et al. 2005).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilidiella castaneicola (Ellis & Everh)</td>
<td>Likely: This fungus has a variety of hosts (ADoA 2014). Table and wine grapes are widely grown in Western Australia (DAFWA 2006; DAFWA 2014b).</td>
<td>Likely: Causes white rot of grapevine berries reducing marketability and causes fruit rot of strawberries (ADoA 2014).</td>
<td>yes</td>
</tr>
<tr>
<td>Phoma tuberculata McAlpine, 1898</td>
<td>Likely: Vitis vinifera is the only reported host of the fungus and is cultivated in Western Australia (CABI Bioscience 2011).</td>
<td>Unlikely: There are very few reports of this fungus worldwide and it is not listed as a major pathogen of grapes (Pearson & Goheen 1988; Nicholas et al. 1994; Rábai et al. 2008).</td>
<td>no</td>
</tr>
<tr>
<td>Organism</td>
<td>Establishment potential</td>
<td>Potential economic consequence</td>
<td>Quarantine pest status</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>--------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Phomopsis viticola (Sacc.) Sacc., 1915</td>
<td>Likely: P. viticola is established in temperate climatic regions throughout the viticultural world and has been reported in Africa, Asia, Australia (except Western Australia), Europe and North America (Hewitt & Pearson 1988). Some areas of Western Australia have a suitable temperate climate.</td>
<td>Likely: P. viticola is a serious pathogen of grapes in several viticultural regions of the world (Hewitt & Pearson 1988). Berry infection, either direct or via infected rachis tissues can occur throughout the growing season. Once inside green tissues of the berry, the fungus becomes latent (Erincik et al. 2002) and infected berries remain without symptoms until late in the season when the fruit matures (Ellis & Erincik 2008).</td>
<td>yes</td>
</tr>
<tr>
<td>Strumella vitis McAlpine, 1898</td>
<td>Not assessed</td>
<td>Unlikely: There are very few reports of this fungus worldwide and it is not listed as a major pathogen of grapes (Pearson & Goheen 1988; Nicholas et al. 1994).</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torula viticola Allesch.</td>
<td>Unlikely: There is limited scientific literature on the fungus T. viticola and even for Torula species on Vitis. Records found in a search of the scientific literature were the report in Victoria (Washington 1983) and a report from Spain listing a Torula species as an endophyte recovered from Vitis vinifera. Endophytic fungi inhabit plant tissue without causing visible disease symptoms (González & Tello 2011).</td>
<td>Unlikely: There is limited scientific literature on the fungus T. viticola. The only record found detailed it on cane tissue of V. vinifera in Victoria. No other records of this fungus on grapevines in other countries or Australia were found in the general scientific literature. This indicates this fungus is not of economic consequence.</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses/Viroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apscaviroid Australian grapevine viroid (AGVd)</td>
<td>Likely: Host plants listed are cultivated in WA and transmitted by mechanical means and through seed</td>
<td>Unlikely: AGVd has not been reported as having any disease effects in grapevines. AGVd</td>
<td>no</td>
</tr>
<tr>
<td>Australian grapevine viroid</td>
<td>(Hadidi et al. 2003; Albrechtsen 2006).</td>
<td>produces little or no obvious disease symptoms (Martelli 1993; Hadidi et al. 2003).</td>
<td></td>
</tr>
<tr>
<td>Apscaviroid Grapevine yellow speckle viroid (GYSVd) strain, 1</td>
<td>Likely: Host plants listed are cultivated in WA and transmitted by grafting, abrasion and through seed</td>
<td>Likely: Mixed infection of GYSVd-1 or GYSVd-2 and Grapevine fanleaf virus causes vein</td>
<td>yes</td>
</tr>
<tr>
<td>Grapevine yellow speckle viroid, 1</td>
<td>(Hadidi et al. 2003; Albrechtsen 2006).</td>
<td>banding that has detrimental effect on the yield of certain varieties (Szychowski et al. 1995).</td>
<td></td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apscaviroid Grapevine yellow speckle viroid (GYSVd) strain, 2</td>
<td>Likely: Host plants listed are cultivated in WA and transmitted by grafting, abrasion and through seed (Hadidi et al. 2003; Albrechtsen 2006).</td>
<td>Likely: Mixed infection of GYSVd-1 or GYSVd-2 and Grapevine fanleaf virus causes vein banding that has detrimental effect on the yield of certain varieties (Szychowski et al. 1995).</td>
<td>yes</td>
</tr>
<tr>
<td>grapevine yellow speckle viroid, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabavirus broad bean wilt virus, 2</td>
<td>Unlikely: At least one strain is transmitted in seed of Vicia faba but no record of seed transmission in Vitis spp. was found. (ADoA 2014).</td>
<td>Not assessed</td>
<td>no</td>
</tr>
<tr>
<td>broad bean wilt virus</td>
<td>Transmitted in a non-persistent manner by aphids. No records of acquisition from infected berries (ADoA 2014).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostuviroid Hop stunt viroid (HSVd) hop stunt viroid</td>
<td>Likely: Host plants listed are cultivated in WA and transmitted by grafting, abrasion and through seed (Koltunow et al. 1988; Hadidi et al. 2003; Albrechtsen 2006).</td>
<td>Likely: Hop stunt viroid is asymptomatic in grapevines and has not been shown to cause economic effects in grapevines. The viroid is only transmissible via the seed pathway and by mechanical means to other hosts including hops (Koltunow et al. 1988; Sano & Shikata 1988). Strains of Hop stunt viroid have been shown to cause symptoms and even death of other host species (Sano & Shikata 1988). Grapevines could represent natural reservoir from which the viroid can potentially be transmitted to other susceptible host crops (El-Dougdoug et al. 2010).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepovirus Arabis mosaic virus</td>
<td>Likely: Host plants listed are cultivated in WA and virus has reportedly been transmitted through seed (Murant 1970 cited in ADoA 2014).</td>
<td>Unlikely: The nematode vector of Arabis mosaic virus is absent and therefore there would be little to no spread of the virus (Borroto-Fernandez et al. 2009)</td>
<td>no</td>
</tr>
<tr>
<td>Nepovirus Grapevine fanleaf virus (GFLV)</td>
<td>Likely: Transmitted occasionally through seed also transmitted by a nematode vector (Xiphinema index) and by grafting (Habili et al. 2001; Martelli et al. 2001).</td>
<td>Likely: Grapevine fanleaf virus is the most serious virus disease of grapevines. The virus causes reduced number and size of bunches (Habili et al. 2001; Martelli et al. 2001).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pospiviroid Citrus exocortis viroid (CEVd) citrus exocortis viroid</td>
<td>Likely: Host plants listed are cultivated in WA and transmitted by grafting, abrasion and through seed (Wah et al. 1997).</td>
<td>Likely: No symptoms of disease observed when Citrus exocortis viroid infects grapevine (Hadidi et al. 2003). Rootstock of citrus that produces symptoms of CEVd are no longer used through the AusCitrus program (Barkley pers. comm.). Grapevines could represent natural reservoir from which the viroid can potentially be transmitted to other susceptible host crops (El-Dougdoug et al. 2010).</td>
<td>yes</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nectrovirus Tobacco necrosis viruses (TNV-?)</td>
<td>Unlikely: Tobacco necrosis viruses have been reported in Qld (Teakle 1988; Plant Health Australia 2001b) and Vic. (Finlay and Teakle 1969; Teakle 1988), but not on grapevine. It is not known if the species or strain that infects grapevine is present in Australia (ADoA 2014).</td>
<td>Not assessed</td>
<td>no</td>
</tr>
<tr>
<td>Vitivirus Grapevine B virus (GVB)</td>
<td>Unlikely: Not seed transmitted; transmitted by grafting; transmitted by the mealy bugs Planococcus ficus, Pseudococcus longispinus and Ps. affinis (Biosecurity Australia 2010). Unlikely to be co-transported with a vector insect or to be transmitted from imported fruit to a suitable host plant.</td>
<td>Not assessed</td>
<td>no</td>
</tr>
</tbody>
</table>
Table 15 Potential for establishment and economic consequences (pathogens)

<table>
<thead>
<tr>
<th>Organism</th>
<th>Establishment potential</th>
<th>Potential economic consequence</th>
<th>Quarantine pest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitivirus: Grapevine virus d (GVD)</td>
<td>Unlikely: No reports of natural spread (DAFF 2013). Unlikely to be co-transported with a vector insect or to be transmitted from imported fruit to a suitable host plant (DAFF 2013).</td>
<td>Not assessed</td>
<td>no</td>
</tr>
</tbody>
</table>
References

ADoA 2014, Draft report for the non-regulated analysis of existing policy for table grapes from Japan. Australian Department of Agriculture (ADoA), Canberra.

Alpine Nurseries 2011, Brachychiton acerifolius Alpine Nurseries,

Anon 1998, Wasp baiting technique to be tested. Australian Viticulture 2: 46.

BA 2005, Final Import Risk Analysis Report for Table Grapes from Chile. Biosecurity Australia (BA), Australian Government,

BA 2006, Final Import Risk Analysis Report for Apples from New Zealand: Part C. Biosecurity Australia, Australian Government,

BA 2011b, Final import risk analysis report for table grapes from the Republic of Korea. Biosecurity Australia,

Buchanan GA 2008, *Biological control of grapevine scales* Department of Primary Industries, Victoria/Grape and Wine Research & development Corporation,

CABI/EPPO 1997, 'Data Sheets on Quarantine Pests - Lopholeucaspis japonica', *Quarantine pests for Europe, 2nd edn*. CAB International (CABI), Wallingford UK

280

Chin D, Thistleton B & Brown H 2009, *Swarming Bugs (family Lygaeidae)*. Department of Resources, Northern Territory Government,

Collins S 2001, *Hortguard baseline disease survey of grapevines*. Department of Agriculture, Western Australia,

DAFF 2013, *Final non-regulated analysis of existing policy for Californian table grapes to Western Australia*. Department of Agriculture, Fisheries and Forestry, Canberra,

DAFWA 2006, *Tablegrapes from Western Australia*. Department of Agriculture and Food,

DAFWA 2014b, Investment opportunities in Western Australia's wine industry. Department of Agriculture and Food, Western Australia,

Davis PR 2004, European wasps. Department of Agriculture, Government of Western Australia,

Dunn G & Zurbo B 2014, Grape vine pests and their management.

Fisher D & Learmonth Se 2012, *Viticulture Spray Guide 2011/2012 - Wine Grapes and Table Grapes*. Department of Agriculture and Food, Western Australia,

Fletcher MJ 2007, *Plant bugs*. NSW Department of Primary Industries,

Hunt DM 1975, Viticulture in Tasmania. Tasmanian Department of Agriculture,

ICTvdB Management 2006, 00.067.0.01.008. Sowbane mosaic virus. Columbia University, New York, USA,

Learmonth SE 2012, *Pests and diseases of olive trees*. Department of Agriculture and Food, Government of Western Australia,

Lindsay KL 1992, *Citrus pests recorded in Australia, Their prevalence, distribution, importance, and control measures being employed against them*. AQIS, Canberra, ACT.

Martelli GP 1997, *Presentation of the Mediterranean Network on Grapevine Closteroviruses (MNGC) and report of activity 1992-97*. Options Mediterraneennes,

286

Milthorpe PL & Cunningham GM 2005, *The kurrajong*. NSW DPI,

Moulden J 1979, *Identification of grain storage insects*. Western Australian Department of Agriculture,

Nobbs JM 2005, *Plant Parasitic Nematodes of Australia*. Published in joint cooperation by the Grains Research and Development Corporation (DAS281), the Sugar Research and Development Corporation (SAI001), Horticulture Australia (VG98102), the South Australian Research and Development Institute and Primary Industries SA,

O'Bannon JH & Duncan LW 1990, *Scutellonema species is crop damaging parasitic nematodes*.

Poole MC, Johnston R & Hardie DC 1998, *Tea red spider mite*. Agriculture Western Australia,

Poole MC, Tuten SJ, Lukeis GW & Stuart MJ 2009, *Final policy review for the risk posed by spiraling whitefly (Aleurodicus dispersus Russell, 1965) associated with the pathways of nursery stock, cut flowers/foliage, leafy vegetables and fresh fruit imported into Western Australia*. Department of Agriculture and Food, Government of Western Australia,

Poole MC, Wood CE, Lanoiselet V, Tuten SJ & Hammond NE 2011, *Final pest risk analysis for the importation of summer fruit from South Australia, Tasmania, New South Wales and Victoria into Western Australia*. Department of Agriculture and Food, Government of Western Australia,

QDPIF 2011, Queensland Department of Primary Industries and Fisheries Insect Collection, online database. Queensland Department of Primary Industries and Fisheries via
Australian Plant Pests Database.

<http://www.dpvweb.net/dpv/showdpv.php?dpvno=326>

Semmens TD, McQuillan PB & Hathurst G 1992, *Catalogue of the insects of Tasmania*. Department of Primary Industry, Tasmania,

Simmonds JH 1966, Host Index of Plant Diseases in Queensland. Department of Primary Industries, Queensland.

Slaven T 2014, 'Pest management of bananas in the ORIA'. In: Webpage. Department of Agriculture and Food, Government of Western Australia [9th July 2014]

Smith D, Beattie GAC & Broadley R 1997, Citrus pests and their natural enemies. Queensland Department of Primary Industry, Brisbane.

Snare L 2006, Pest and disease analysis in hazelnuts. Horticulture Australia Limited, Sydney, NSW.

TFIC 2013, Tasmanian Forest Insect Collection via APPD, online database. Department of Primary Industries, Water and Environment, Tasmania.

TFIC 2014, Tasmanian Forest Insect Collection via APPD, online database. Department of Primary Industries, Water and Environment, Tasmania.

Watson GW 2004, Verification of Yellow scale Aonidiella citrina (Coquillett) [Hemiptera: Diaspididae], Forrestfield, on upper surface of Citrus sp. leaf, 13.ii.1990, coll. J.H. Martin no. 5651. Scientific Associate (Sternorrhyncha - Coccoidea and Aleyrodoidea) (ed. GoWA Department of Agriculture). Entomology Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.

White IM & Elson-Harris MM 1992, Fruit Flies of Economic Significance: Their identification and bionomics. CABI and ACIAR.

WINC 2014, Waite Insect and Nematode Collection, online database. University of Adelaide, South Australian Research and Development Institute via Australian Plant Pests

Woods W, Dick J & Learmonth S 1996, *Orchard and Vineyard pest and disease management guide, March 1996*. Agriculture Western Australia, Government of Western Australia,